
Lecture 8: Formation of the

Solar Wind

Aims, learning outcomes, and overview

Aim: To describe the theory for the origin of the solar wind, and to introduce some
of the observational and theoretical characteristics of the wind.

Learning outcomes: At the end of this lecture, students are expected to:

• understand why hydrostatic models of the solar atmosphere are incompatible
with interstellar gas pressures;

• be able to derive the equation describing Parker’s original steady unmagne-
tised wind solution;

• be able to explain why a unique solution to this equation applies to the solar
wind;

• be aware of the close analogy between Parker’s solution and fluid flow in
nozzles and rocket exhausts;

• understand the origin of the Parker spiral describing the shape of magnetic
field lines in the solar wind;

• understand how Parker’s theory may be modified to incorporate a magnetic
field in a self-consistent way;

• appreciate the qualitative features of equatorial magnetised wind solutions;

• understand the role of the solar wind magnetic field in angular momentum
transport;

• be aware of the properties of the fast and slow components to the observed
solar wind, and their origin at the Sun.

Overview: The outer atmosphere of the Sun is continously expanding due to
the pressure difference between the hot corona and the cool interstellar medium.
This expansion is called the solar wind. In this lecture an outline of E.N. Parker’s
original theory for the solar wind is given, followed by the modification of the theory
to include the effects of the magnetic field. The wind is also linked to the velocity
filtration model for the corona. A number of recent developments are also discussed,
including the observational identification of fast and slow solar wind components.
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8.1 Introduction

A theory predicting the existence of the solar wind was given by E.N. Parker in 1958,
although there were earlier observational suggestions of the existence of the wind,
based on the study of geomagnetic storms and other activity on Earth that could
be correlated with solar flares and other activity (sometimes called solar-terrestrial
relations) and on the behaviour of the tails of comets. In the first half of this
century, “solar corpuscular radiation” was commonly invoked to explain aurorae
and geomagnetic activity, although the radiation was assumed to be associated
with solar activity and thought to be transient rather than continuous. In the
1950s, Biermann argued that the anti-sunward orientation of the ionised tails of
comets was produced by an interplanetary background of ions flowing continuously
and radially from the Sun. However, Biermann’s model required large velocities
and an uncomfortably large density of ions, and had no theoretical basis.

By the 1950s it was well-established that the solar corona is at a temperature
of several million degrees. At this temperature, the thermal conductivity of the
gas is very high (about twenty times that of copper at room temperature!). The
consequences of the high coronal conductivity were explored by Chapman in 1957.
The conductivity is dominated by the electron conductivity, which may be written

F = −κ0T
5/2

∇T, (8.1)

where κ0 ≈ 1.8 × 10−11 W m−1 K−7/2. Assuming coronal heating occurs close to
the Sun, it is reasonable to assume a conserved, radially outward heat flux

∇ · F = −
1

r2

d

dr

(

r2κ0T
5/2

dT

dr

)

= 0. (8.2)

outside a boundary at r = R� at a temperature T0. Assuming also that the
temperature profile goes to zero at infinity, (8.2) has the solution

T = T0

(

R�

r

)2/7

. (8.3)

Because of the high conductivity, the temperature profile falls off very slowly with
distance; for T0 = 106 K, the temperature at the orbit of the Earth (r = 215R�)
implied by (8.3) is about 2 × 105 K. If the corona is in static equilibrium under
pressure and gravity forces, then

dP

dr
= −

GM�η

r2
, (8.4)

where P is the pressure, η is the mass density of the gas, G is the gravitational
constant, and M� is the solar mass. The mass density is given by η ≈ nmp, where
n is the number density of electrons. Assuming a single temperature for electrons
and ions, the pressure is P = 2nkBT , where kB is the Boltzmann constant. Using
these relations for the mass density and pressure in equation (8.4) together with
(8.2) leads to the solution

n = n0x
2/7 exp

[

7λ0

5

(

1

x5/7
− 1

)]

, (8.5)

where x = r/R�, n0 is the number density at r = R�, and

λ0 =
GM�mp

2kBR�T0

. (8.6)
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Equations (8.3) and (8.5) represent the Chapman model for a static corona. The
pressure implied by the model is

P = P0 exp

[

7λ0

5

(

1

x5/7
− 1

)]

, (8.7)

where P0 = 2n0kBT0 is the pressure at the coronal base. The Chapman model has
the undesirable characteristic that the pressure is finite at large distances from the
Sun, and heads towards the value P∞ = P0 exp(−7λ0/5). For coronal densities and
temperatures, P∞ ≈ 10−6 Pa. Although conditions in the interstellar medium are
not well known, the pressure is thought to be much lower than this, by a factor of
107 or so. Hence, the Chapman model cannot merge smoothly with the interstellar
medium. At least a strong shock would be required.

Parker realized that this mismatch was not just an artifact of the model but
implied that the solar corona could not be in hydrostatic equilibrium out to large
distances from the Sun. Motivated also by Biermann’s arguments for a continuous,
rapid outflow of material from the Sun, Parker began to investigate an alternative
solution, a corona in continuous expansion.

Before proceeding I note that the single particle analysis described in the pre-
vious Lecture for the origin of the corona, the so-called velocity filtration (or exo-
spheric) model for the corona, implies that coronal particles with sufficient thermal
energy should be able to overcome the Sun’s gravity. These particles are then free
to move out into the interplanetary medium, and with a continuous supply of en-
ergy to photosphere would imply a continuous stream of hot particles leaving the
Sun. Moreover, considering electrons and protons separately, I noted that electrons
would naturally satisfy the energy requirements, thereby setting up an ambipolar
electric field that would cause the protons to drift out at the same average speed
as the electrons. However, these ideas were not considered in the late 1950s, so
Parker’s model for the solar wind (although not incompatible) was developed along
different lines.

8.2 Parker’s solution for an unmagnetised wind

Parker considered the next simplest solution – a spherically symmetric corona in
steady motion. The influence of the magnetic field and of rotation are neglected.
The time-steady equation of motion for the fluid is then (see Eq. (2.26) in Lecture 2)

ηu
du

dr
= −

dP

dr
−

GM�η

r2
, (8.8)

where u is the speed of expansion, assumed to be purely radial. The pressure
gradient may be eliminated by writing dP/dr = (dP/dη)dη/dr and using the adia-
batic equation of state, which gives dP/dη = ΓP/η = c2

s (cs is the adiabatic sound
speed). Conservation of the mass flux requires ηur2 = constant, which may be used
to eliminate dη/dr. In this way Eq (8.2) reduces to

(u2 − c2

s)

u

du

dr
=

2c2

s

r
−

GM�

r2
. (8.9)

The nature of solutions to (8.9) is best seen by considering the simple case of an
isothermal atmosphere (Γ = 1), following Parker’s original paper. First note that
the form of equation (8.9) indicates that it is only possible to have u = cs at r = rc,
where

rc =
GM�

2c2
s

. (8.10)
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Figure 8.1: Solutions for an isothermal spherical wind [Hundhausen, 1972], with
uc = cs.

At this critical point, the left and right hand sides of (8.9) vanish simultaneously.
The advantage of the isothermal case is that (8.9) is integrable, since cs is constant,
and the solution may be written

(

u

cs

)2

− ln

(

u

cs

)2

= 4 ln

(

r

rc

)

+
4rc

r
+ C, (8.11)

where C is the constant of integration. The solutions to (8.11) depend on C, and are
illustrated in Figure 8.1 Four classes of solution are labelled in the figure, depending
on whether u(rc) is smaller or larger than cs. The solutions have different behaviour
at small r and as r → ∞, as shown.

Parker chose Class 2 as the solution of physical relevance to the Sun, for the
following reasons. For the Sun we require a small speed at r = R�, which is true
for the solutions of Class 1 and Class 2. For the Sun we also require a small pressure
at large r, as explained in the discussion of the Chapman model. For an isothermal
wind P ∝ η, and using the mass conservation relationship ηr2u = const, it follows
that the pressure at large r will be small provided u is large at large r. This points
to solutions of Class 2 or Class 4. Hence only the solution of Class 2 satisfies both
requirements. [This solution corresponds to C = −3 in Equation (8.11), as may be
verified by substituting u = cs and r = rs.] Parker’s solution passes through the
critical point (the model places the critical point at about 11.5R� for a million-
degree corona) and the wind is supersonic for r > rc.

There is a close analogy between the solar wind and a de Laval nozzle, which
is used to attain supersonic flow in rocket exhausts. The nozzle (illustrated in
Figure 8.2) has a varying cross section, A(z), where z is the coordinate along the
axis of the nozzle, in the direction of motion of the fluid. The equation of motion
for gas in the nozzle (neglecting gravity) is

ηu
du

dz
= −

dP

dz
. (8.12)

Following a similar procedure to that used to derive (8.9) it follows that adiabatic
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flow through the nozzle satisfies the differential equation

(u2 − c2

s)

u

du

dz
=

c2

s

A

dA

dz
. (8.13)

When the flow is subsonic (u < cs), du/dz and dA/dz have opposite signs. Hence a
narrowing of the tube will accelerate the flow, as expected from everyday experience
with (nearly) incompressible fluids. However, when the flow is supersonic (u > cs),
the behaviour is counter-intuitive. Then du/dz and dA/dz have the same sign, so
a widening of the tube is required to accelerate the flow. For a flow to continuously
accelerate from subsonic to supersonic, it is neccesary to have a structure that
narrows and then widens — the de Laval nozzle. The sonic point, u = cs, is
achieved at the neck of the nozzle where dA/dz is zero.

sonic line

supersonic
  flow

subsonic
  flow

Figure 8.2: At a de Laval nozzle an incoming subsonic flow becomes supersonic.

Comparison of equations (8.9) and (8.13) shows the similarity of the physical
systems; the gravitational field in (8.9) effectively plays the role of a nozzle. Note
that the r-dependence on the right hand side of (8.9) must be such that the critical
point is outside the Sun for a solar wind solution to exist.

Parker’s supersonic wind theory was controversial for several years, despite the
agreement of the model with the speeds inferred from Biermann’s interpretation
of comet tails. The controversy was resolved in in favour of Parker’s model when
the first in situ observations (in the early 1960s) confirmed that the interplanetary
region is pervaded by a supersonic flow of solar plasma.

8.3 The magnetized solar wind

The foregoing model for the solar wind neglects magnetic forces. Some rationales
for this can be seen by comparing the sizes of the terms in the steady-state MHD
momentum equation [e.g., Cravens, 1997]:

ηu.∇u = −∇p + J ×B + ηg (8.14)

ηu2/L : p/L : B2/(µ0L) : ηg (8.15)

M2

A : β ≈ c2

s/V 2

A : 1 : Ugrav/V 2

A . (8.16)

Here L is a characteristic distance in the corona and Ugrav = GMS/RS . These
terms vary in their characteristic size with position in the corona, as illustrated
in Table 8.1. Close to the photosphere and chromosphere it appears legitimate to
neglect magnetic field effects - at larger radial distances it is not. This Section
considers the effects of the magnetic field, first kinematically using the frozen-in
assumption and then dynamically.
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Location r/RS M2

A β Ugrav/V 2

A

photosphere 1.01 10−3 10 10
chromosphere 1.04 10−3 0.5 0.5
corona 3 0.3 0.1 0.1
corona 10 1 0.05 0.05

Table 8.1: Characteristic sizes of terms in the MHD momentum equation (8.16)
from the photosphere to the corona, after Cravens [1997].

8.3.1 The Parker spiral model for the magnetic field

Parker also considered the implication of the solar wind in regard to the configu-
ration of the Sun’s magnetic field. The high electrical conductivity of the plasma
means that the field is frozen-in to the plasma (see Lecture 2). The magnetic field
must therefore be transported out into interplanetary space by the wind. The shape
of the magnetic field lines is then determined by the wind velocity together with
the rotation of the Sun.

If the wind is purely radial (i.e. u has only the component ur = u), then in
a spherical coordinate system rotating with the Sun, the solar wind velocity has
components

Ur = u, Uφ = −Ω�r sin θ, Uθ = 0, (8.17)

where Ω� = 2.7 × 10−6 rad s−1 is the angular velocity of the Sun’s rotation (dif-
ferential rotation is neglected in this simple treatment). The nonradial velocity
component is due to the transformation to the rotating frame. The path followed
by the magnetic field is a velocity streamline in this rotating frame and so is defined
by

1

r

dr

dφ
=

Ur

Uφ
= −

u

Ω�r sin θ
. (8.18)

The Parker solution predicts that for distances several times larger than rc, the
wind speed u is almost constant. Assuming u = u0 (a constant), then (8.18) can be
integrated to give

r − R� = −
u0

Ω� sin θ
(φ(r) − φ�), (8.19)

where φ� is the initial azimuthal angle at the surface of the Sun. Equation (8.19)
describes a geometrical figure known as an Archimedean spiral. The winding dis-

tance, ∆R, is the radial distance in which the spiral has wrapped once around the
Sun. From (8.19), ∆R = 2πu0/Ω�. For a wind speed u0 = 400 kms−1, ∆R ≈ 6 AU.

Figure 8.3 shows a dramatic confirmation of the Parker spiral achieved via to-
mographic inversion of radio scintillation measurements.

Similar direct evidence for the Parker spiral is shown in Figure 4.8 of Lecture 4
on plasma waves, based on triangulation of the source locations of electron beams
generating type III solar radio bursts while propagating away from the Sun into the
solar wind.

The idea that the fluid flow moves strictly radially whilst the streamlines of the
flow are curved may be understood by reference to a phonograph player, where
the needle moves only radially whilst tracing the spiralling grooves of a record.
Figure 8.4 illustrates the motions involved. It should also be noted that whilst the
geometrical figure of the fieldlines co-rotates, the fluid accelerated by the solar wind
does not co-rotate but instead moves radially outwards. In contrast, material on
closed field lines in the solar corona must co-rotate.
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Figure 8.3: A 3-D reconstruction of the heliospheric plasma, based on ra-
dio scintillation measurements made from Earth’s orbit (the circle). The
Parker spiral is clearly visible in the form of the density-enhanced regions.
[http://www.sdsc.edu:80/GatherScatter/GSfall96/jackson.html.]

Ω

B

u

Figure 8.4: The drawing out of a magnetic field line by the solar wind, with radial
velocity u, is illustrated schematically.

8.3.2 Equatorial magnetized wind models

Parker’s treatment of rotation and of the magnetic field is not self-consistent, as
illustrated in Table 8.1. The theory was modified to include a magnetic field in a
consistent manner about a decade after Parker’s initial 1958 work.

The starting points for the theory of a magnetized wind are conservation of
mass, the divergence equation for the magnetic field, the frozen-in magnetic field
equation, and the momentum equation. The rate at which the Sun loses mass is
constant in a steady-state model, and is given by

Ṁ = 4πηr2ur . (8.20)

This equation then show that η ∝ r−2 in regions where ur is constant. Such regions
are often called ”wind-like” regions.

Conservation of magnetic flux in the wind (∇·B = 0) leads to

Brr
2 = Br�R2

�, (8.21)

with the assumptions that Bθ = 0 and that Bφ is constant, either for all φ or in
small regions (flux tubes) in which the derivative ∂Bφ/∂φ can be neglected.

7



For simplicity now, the fluid velocity and magnetic field are assumed only to
have radial and azimuthal components in spherical coordinates, u = urr̂+uφφ̂ and

B = Brr̂ + Bφφ̂. This restricts the description to equatorial magnetized winds.
The next equation for a magnetized wind is provided by the frozen-in field

condition (E = −u×B) which with ∇×E = 0 for a static magnetic field (∂B/∂t =
0) implies

∇×(u ×B) = 0. (8.22)

This leads to three vector equations, of which the θ component leads to nothing
useful. The φ-component of (8.22) requires

∂

∂r
r(uφBr − urBφ) = 0 . (8.23)

The r component leads to

∂

∂φ
r(uφBr − urBφ) = 0. (8.24)

On integrating (8.23), the constant of integration is found by considering the
boundary condition at r = R�.

Bφ =
uφBr + C

rur
. (8.25)

Using the flux conservation condition (8.21) leads to

Bφ =
Bφ(R�)R�

r
− Br

Ω�(r − R�)

ur
. (8.26)

. Usually the magnetic field is assumed to be radial at the source surface, idealized
here as occurring at r = R�, so that Bφ(R� = 0, and is is assumed that ur is
constant. The magnetic field can then be shown to lie on spiral shapes, consistent
with the foregoing kinetmatic analysis.

A magnetized wind solution is found by integrating the radial component of the
equation of motion,

η

(

ur
dur

dr
−

u2

φ

r

)

= −
dP

dr
−

Bφ

µ0r

d

dr
(rBφ) −

GM�η

r2
. (8.27)

There is only one solution that has ur = 0 at the surface of the star and that
is supersonic at large distances. Figure 8.5 illustrates the solutions to (8.27) and
the physically acceptable solution (the central solid line). There are three critical
points in the magnetized case, and the physically acceptable wind solution passes
through all of them. Near the Earth, the flow speed of the solar wind is known to
be superalfvénic. The Alfvén radius, rA, where the flow speed passes through the
Alfvén speed, is thought to occur at rA = 10–20R�.

From (8.21), the radial component of the field falls off according to Br ∝ r−2.
The variation of the azimuthal field may be determined from (8.25); at large dis-
tances, ur is almost constant, and so the dominant variation is Bφ ∝ r−1. Hence
the field spirals tighten with increasing distance from the Sun, becoming almost
circular. This property was also apparent in the simple unmagnetized treatment
due to Parker, presented in Section 8.2 via Eq. (8.18).

We now turn to another topic, which is really an aside on the rate of angular
momentum loss from the Sun. Returning to Eqs (8.20) and (8.21), they imply that
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Figure 8.5: A schematic showing solutions to Eq. (8.27). There are three critical
points, corresponding to the flow speed being equal to the speed of the slow, Alfvén
and fast modes, but the latter two are so close together that they are indistinguish-
able in the figure. The only acceptable solution is the central solid curve that passes
through all three critical points and gives a supersonic flow at infinity.

ηur/Br = Ṁ/4πB�R2

� is a constant. Hence Eq. (8.23) may be integrated trivially,
giving

r

(

uφ −
BrBφ

µ0ηur

)

= `, (8.28)

where the constant of integration, `, may be interpreted as the angular momentum
per unit mass. Now Eqs (8.28) and (8.25) may be rewritten in the form

ruφ =
M2

A` − Ω�r2

M2

A − 1
, (8.29)

where

M2

A =
u2

r

B2
r/(µ0η)

(8.30)

is the radial Mach number.
The Alfvénic critical point is defined as the point at which the radial flow is equal

to the Alfvén speed, that is, MA = 1. Now uφ must remain finite everywhere, and
hence the numerator in (8.29) must vanish at the point where MA passes through
unity. Let the Alfvénic critical point be at r = rA, with MA = 1 there by definition.
The vanishing of the numerator in (8.29) at this critical point gives ` = Ω�r2

A,
and thus determines the angular momentum per unit mass at r = rA. The angular
momentum loss rate is then Ṁ` = ṀΩ�r2

A. Thus (8.29) implies that, from the
viewpoint of the amount of angular momentum carried off, the plasma is effectively
thrown off with a lever-arm of length rA. Specifically, the angular momentum
carried off by the rotating, magnetized solar wind is equivalent to that implied by
rigid rotation out to the Alfvén radius rA.

The Sun is thought to have been rapidly rotating when it first formed, and to
have lost most of its angular momentum to the solar wind. To understand this effect
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of the magnetized wind, suppose that the solar wind were unmagnetized. Then it
would carry off angular momentum at the rate ṀΩ�R2

�, which is determined by
the angular momentum per unit mass of the wind as it leaves the solar surface. For
the actual value of Ṁ , this rate is too small to lead to any significant reduction of the
angular momentum of the Sun over its life time. Now consider a magnetized wind,
for which the angular momentum loss rate is ṀΩ�r2

A. This is larger than that for
an unmagnetized wind by the factor r2

A/R2

� ∼ 102–103, and is large enough to have
slowed down the Sun significantly in its life time. The Sun appears to have lost
nearly all its angular momentum to its wind (nearly all the angular momentum of
the solar system is in the planetary motions, overwhelmingly dominated by Jupiter’s
contribution).

8.4 The fast and slow solar wind

In situ observations at 1 AU have established that there are two components to
the quiescent solar wind, viz. high-speed streams (u ≈ 700 kms−1), and low-speed
streams (u ≈ 350 kms−1). There are also transient flows (coronal mass ejections, or
CMEs) that can be faster again, but the discussion of these is deferred to Lecture 9.
The low-speed wind is denser than the high speed wind (n ≈ 107 m−3 as opposed
to n ≈ 3 × 106 m−3), and carries a greater flux of particles. The high-speed wind
originates in coronal holes, whereas the low-speed wind comes from dense coronal
streamers straddling magnetic neutral lines at the Sun, which tend to be either
equatorial (near solar minimum) or else lie along the streamer belts at intermediate
latitudes.

The Ulysses mission is an out-of-the-ecliptic spacecraft that has provided de-
tailed information on the latitudinal structure of the solar wind. Ulysses used a
Jupiter swingby in February 1992 to take it on an orbit that passed over the south
pole of the Sun for the first time in September 1994, and over the north pole in July
1995. The second pass over the poles was in 2000/2001, close to solar maximum.
Figure 8.6 illustrates Ulysses measurements of the solar wind speed versus latitudes
for the two passes, and the relationship of the wind speed with the inner coronal
structure. Ulysses found the polar solar wind to be a very uniform, high-speed
flow, and has provided a wealth of detail on the three-dimensional structure of the
magnetic field in the solar wind, on the interactions between low- and high-speed
streams, and on transient disturbances in the wind.

The high-speed wind is difficult to explain in the context of theoretical models of
the type discussed above. Thermally driven winds do not attain such high speeds,
and it is necessary to provide additional energy and momentum to the wind at
≥ 15R� to reproduce the observations (e.g. Withbroe 1988). One popular model
involves the ad hoc assumption of a flux of Alfvén waves that dissipates in the wind.
The in situ detection of Alfvénic fluctuations at 1 AU provides some support for
this model.

High-speed streams in the solar wind tend to be unipolar, i.e. the magnetic field
within the flow points either entirely away from or entirely towards the Sun along
the archimedean spiral. The magnetic polarity of a stream is determined by the
polarity of the coronal hole from which the stream originates. Field polarity rever-
sals occur within slow-speed streams, and these reversals correspond to crossings of
the heliospheric current sheet (HCS) that encircles the Sun. If the (approximately)
dipole global field of the Sun is inclined, the rotation of the Sun leads to the HCS
having a “ballerina’s skirt” configuration. The interaction of low- and high-speed
streams can lead to the formation of shocks in the wind.
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Figure 8.6: Ulysses observations of the speed of the solar wind as a func-
tion of latitude, overlayed on an image of the structure of the corona
during the period of observation. From D. McComas and colleagues at
http://solarprobe.gsfc.nasa.gov/solarprobe science.htm.)
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