
Lecture 2

Kinetic, Fluid & MHD

Theories

The Vlasov equations are introduced as a starting point for both kinetic theory
and fluid theory in a plasma. The equations of fluid theory are derived by taking
moments of Boltzmann’s equation. The one-fluid theory for a magnetized plasma
is called magnetohydrodynamics (MHD). Various properties of the MHD equations
are outlined with reference to the frozen-in flux condition, magnetic pressure and
tension, and MHD waves.

2.1 Aims, Learning Outcomes, and General Con-

siderations

Aims. To develop, justify, and understand the basic equations governing the bulk
motion of plasmas in the kinetic, fluid, and MHD theories. These differ from orbit
theory (Lecture 1) by being dynamical theories for plasma particles moving in both
self-consistent and prescribed electromagnetic fields. They are required to under-
stand the dynamics of general plasma flows (in solar system contexts and elsewhere),
wave modes in plasmas, instabilities, particle acceleration, and shocks.

Expected Learning Outcomes. You are expected to

• Know the benefits and disadvantages of kinetic, fluid, and MHD descriptions
of plasmas, both from one another and from orbit theory.

• Be able to write down and explain the terms in the governing equations of
kinetic theory.

• Be able to list the governing equations, and explain the terms therein, for
fluid theories.

• Be able to derive the fluid equations corresponding to conservation of mass,
charge, and momentum, and to explain the terms in the associated energy
equation.

• Be able to identify the MHD equations and to derive the associated mass and
momentum conservation equations.

• Be able to identify the terms in the MHD version of Ohm’s Law and to use
the equation to explain convection electric fields and frozen-in magetic fields.

• Understand magnetic pressure and tension forces.
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• Outline the derivation of the dispersion equation for the 3 basic MHD wave
modes and describe their properties.

Preamble Orbit theory (lecture 1) describes the motion of individual test par-
ticles in prescribed E and B fields. However, it is not self-consistent, since the
feedback to the EM fields is not included for the currents and charge separations
induced by particle drifts. It is also not a dynamic theory. Kinetic theories treat
all the plasma particles simultaneously by evolving the (single) particle distribution
function in the prescribed and (ideally) self-consistent electromagnetic fields. Fluid
theories integrate or average over the distribution function to treat the bulk plasma
motion and properties.

2.2 Distribution functions

The particle distribution function f(v,x, t) is defined so that the total number of
particles in a differential six-dimensional phase space element d3vd3x is equal to
f(v,x, t)d3vd3x. The particle number density (number of particles per unit volume)
is

n(x, t) =

∫

d3v f(v,x, t) (2.1)

Other physical quantities are obtained by taking moments, where the moment of
quantity Θ(v) is defined by

〈Θ(v)〉 =
1

n(x, t)

∫

d3v Θ(v)f(v,x, t) (2.2)

Using (2.2), the following physical quantities are defined for particle species α:

• Fluid velocity:
uα = 〈vα〉 (2.3)

• Mean thermal velocity:
Vα =

√

〈(vα − uα)2〉 (2.4)

• Mass density:

η =
∑

α

mαnα (2.5)

• Mean mass velocity:

U =
1

η

∑

α

mαnαuα (2.6)

• Pressure tensor:
pα,ij = mαnα〈wα,iwα,j〉 (2.7)

where wα = vα − U is the velocity of a particle relative to the mean mass
velocity.
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The velocity distribution function for a plasma in thermal equilibrium is a Maxwellian,
with

f(v) =
n

(2π)3/2m3V 3
exp

[

−
v2

2V 2

]

. (2.8)

Other distributions are often detected in space plasmas; for example, bi-Maxwellians
with different temperatures in directions parallel and perpendicular to the back-
ground magnetic field, and generalized Lorentzian (or Kappa) distributions which
depart from the Maxwellian functional form at high energies and instead obey a
power law.

2.3 Basic equations

Boltzmann’s equation

The distribution function fα(v,x, t) for species α satisfies

dfα

dt
=

∂fα

∂t
+v ·

∂fα

∂x
+

qα

mα

(

E + v×B +
mα

qα
g

)

·
∂fα

∂vα
=

(

∂fα

∂t

)

coll.

+

(

∂fα

∂t

)

oth

.

(2.9)
The left-hand side is equal to the total time derivative (in six-dimensional phase
space) of the distribution function. The terms on the right-hand side treat collisional
effects and any other effects such as charge-exchange collisions, ionization, chemical
reactions, scattering by waves etc.

Usually the spatial resolution for such calculation is restricted to scales greater
than the Debye length λD . This is the scale over which the long-range electrostatic
potential of each particle is shielded by other (oppositely charged) particles in the
plasma. Consider a test particle (proton) placed in a plasma. Electrons are at-
tracted to the test particle (and ions repelled, but they are less mobile due to their
relatively large mass), and form a “sheath” around the proton, so that the potential
for the test particle has the form,

φ ∝
1

r
exp

(

−
r

λD

)

, (2.10)

where the exponential factor is due to Debye shielding. The Debye length λDα =
Vα/ωp, where ωp is the electron plasma frequency, with ω2

p = nee
2/meε0.

Liouville’s Equation is a special version of the Boltzmann equation in which the
righthand side equals zero, and so the number of particles in a given phase space
volume remains constant (although the coordinates of the phase space volume may
change as the particles move under the influence of forces). Liouville’s equation
is very useful in treating the evolution of test particles. However, it is not fully
self-consistent since it does not include, for instance, the effects of growing waves
scattering particles. The Boltzmann equation is arguably the most general kinetic
equation available. However, it is very demanding computationally for realistic
applications, thereby often requiring different approaches to be used.

Maxwell’s equations

∇ × E = −
∂B

∂t
(Faraday’s Law) (2.11)

∇ × B = µ0J +
1

c2

∂E

∂t
(Ampere’s Law) (2.12)

∇ · E = ρ/ε0 (Poisson’s equation) (2.13)

∇ · B = 0 (2.14)
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Charge and current densities

ρ(x, t) =
∑

α

qαnα =
∑

α

∫

d3vqαfα(v,x, t) (2.15)

J(x, t) =
∑

α

qαnα〈vα〉 =
∑

α

∫

d3vqαvfα(v,x, t) (2.16)

Vlasov equations and Kinetic Theory

If Boltzmann’s equation (2.9) is solved in situations where E and B are known
external fields then it is a linear differential equation. However in a plasma, gov-
erned by the set of equations (2.9) - (2.16), one must solve for self-consistent E and
B fields. The equations that describe how charge and current densities affect the
magnetic and electric fields (Maxwell’s equations) must also be considered. The
interdependent nature of the particle and field interactions is illustrated schemat-
ically in Figure 2.1. The velocity of a charged particle injected into a plasma will
change under the influence of the existing E and B fields. These forces are different
for electrons and ions, whose subsequent motion alters the charge distribution and
induces currents, which in turn alter the fields. When equations (2.9) - (2.16) are
solved in a self-consistent manner, with the collisional term in Boltzmann’s equation
set to zero, they are referred to as the Vlasov equations.

Equations (2.9) - (2.16) are a system of nonlinear integro-differential equations.
They provide the basis for most plasma kinetic theories (specifically including those
treated in later lectures) and fluid theory.
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Figure 2.1: Flow chart illustrating the nonlinear interactions between particles and
electromagnetic fields in a plasma.

2.4 Fluid theory

In the fluid description, information on the particle velocity distribution is replaced
by values “averaged” over velocity space. This approximation is justified provided
that the relevant time scales are long in comparison with microscopic particle mo-
tion time scales (τ > Ω−1

e , ω−1
p , ν−1

e , where νe is the collisional frequency) and
that spatial scale lengths are long in comparison with the Debye length and the
thermal ion gyroradius. There is no requirement that the particle distribution be
Maxwellian. Instead, the required “averaging” over velocity space is performed by
taking moments of Boltzmann’s equation (2.9). Moment equations are obtained
by multiplying (2.9) by an arbitrary function of velocity Θ(v) and integrating over
velocity space. Note that if the particle velocity distribution is in truth composed
of several components with widely different parameters then several “fluid” com-
ponents can be introduced to approximate the evolution of the total distribution
function.
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Conservation of particles: Taking the zeroth order moment, with Θ(v) = 1,
gives

∂nα

∂t
+ ∇·(nαuα) = 0 . (2.17)

The right-hand side is zero due to particle conservation for ions and electrons (for
an ideal plasma, ignoring ionization, recombination and charge exchange effects);
i.e.,

(

∂np

∂t

)

coll.

= 0 ,

(

∂ne

∂t

)

coll.

= 0 . (2.18)

Mass conservation equation: multiply (2.17) by mα and sum over α:

∂η

∂t
+ ∇·(ηU) = 0 . (2.19)

Charge conservation equation: Multiply (2.17) by qα and sum over α:

∂ρ

∂t
+ ∇·(ηJ) = 0 . (2.20)

This equation can be derived directly from Poisson’s Equation and Ampere’s Law.
Momentum conservation equation or force balance: We take the first

order moment [Θ(mv) = mv] by multiplying (2.9), rewritten in tensor form, by
mvs and integrating over velocity space. After some manipulation, this is expressed
in the form (omitting particle species α),

∂

∂t
(mnus) +

∂

∂xi
[pis + mn(Uius + Usui − UiUs)]

−nqEs − nqεsjkujBk − nmαgs = ±Ps (2.21)

Here P is the momentum density, with

P = mp

∫

d3vp vp

(

∂fp

∂t

)

coll.

= −me

∫

d3ve ve

(

∂fe

∂t

)

coll.

, (2.22)

since collisions between electrons and ions within the plasma do not change the
total momentum density of the system.

Energy conservation equation: The second order moment of Boltzmann’s
equation yields the equation of energy continuity. It is not quoted here. However,
the MHD version of this equation is given below as (2.31).

2.5 MHD equations

Magnetohydrodynamic theory involves a further simplification of fluid theory, where
the proton and electron fluids are combined and assumed to possess a common flow
velocity U . The equation of motion for the MHD fluid is derived by adding electron
and proton forms of (2.21), to give

∂

∂t
(ηUs) +

∂

∂xi
(pis + ηUiUs) − ρEs − εsjkjjBk − ηgs = 0 , (2.23)

where pis = pp,is + pe,is. We assume that the distribution of particle velocities is
sufficiently random such that the pressure tensor may be approximated by a scalar,
with pij = pδij . In vector form, the MHD equation of motion is,

η

[

∂U

∂t
+ (U·∇)U

]

= −∇p + ρE + J×B + ηg . (2.24)

5



The equation for conservation of mass density was used to obtain this form. Usual
MHD theories assume ρ = 0 and ignore gravity to arrive at the form

η

[

∂U

∂t
+ (U·∇)U

]

= −∇p + J ×B . (2.25)

The fluid velocity U(x, t) is an Eulerian velocity, which refers to the velocity
of a fluid element, and not the the velocity of individual particles that constitute
that fluid element at any one time. This is to be contrasted with a Lagrangian

velocity, which is the time derivative of the position vector of a particle, and is thus
only a function of time; e.g., Newton’s equation of motion for a single particle is
Lagrangian. The quantity in square brackets on the left-hand side of (2.25) is called
the convective derivative.

A further relation, linking J and the fields, is obtained by multiplying the proton
form of (2.21) by −e/mp and the electron form of (2.21) by e/me (where e is the
charge of an electron). Terms quadratic in velocity are ignored ensuring that the
resulting expression will be linear in J. After adding the two equations and making
the following simplifying approximations (given that me � mp):

ne ≈ np ≈
η

mp
, up,s ≈ Us , ue,s ≈ Us −

mpc

ηe
Js ,

and assuming that the momentum exchanged between electrons and ions is propor-
tional to the relative velocity of the two types of particles, with

Ps = −
ηeJs

mpσ
, (2.26)

where σ is the conductivity coefficient, with σ = ε0ω
2
p/νe, the generalized form of

Ohm’s law is

J +
σmpme

ηe2

∂J

∂t
+

σmp

ηe
J ×B = σ

(

E + U ×B +
mp

ηe
∇p

)

. (2.27)

The second term on the lefthand side is usually called the “inertia” term, while
the third is called the “Hall” term. For low-frequency disturbances, with charac-
teristic frequency ω � νe, the inertia term is proportional to ω/νe and may be
dropped. In situations where the electron cyclotron frequency Ωe � νe, the Hall
term is proportional to Ωce/νe and may also be dropped. Note that this term
remains very important when the ion and electron flows differ, for example near
the center of magnetic reconnection regions and associated current sheets. If the
pressure gradient term is also insignificant, then (2.27) reduces to

J = σ(E + U ×B) . (2.28)

In the perfectly conducting limit (σ = ∞), (2.28) further simplifies to

E + U ×B = 0 . (2.29)

This means that in a highly conducting plasma with a flow and zero current must
set up an electric field E = −U ×B. This so-called convection electric field leads
to E×B drift of the plasma perpendicular to B (see Lecture 1 for examples).
Equation (2.29) also leads to the situation of frozen-in magnetic flux, in which a
plasma carries a magnetic field along with it. This condition may be stated formally
as the magnetic flux through a closed loop that moves with the fluid is constant in

time, where the magnetic flux Φ =
∫

B · n̂ dS, where n̂ is the unit normal to a
surface S. This is illustrated in Figure 2.2 for a closed loop at two consecutive
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U

B

S(t )1 S(t )2

Figure 2.2: The closed loop S embedded in the fluid is stretched out at a later
time t2 > t1 by a non-uniform fluid velocity profile. The magnetic flux through S
remains constant and the field lines are tied to the fluid.

times t1 and t2, where the loop is stretched out as the fluid locally expands and
the density of magnetic field lines enclosed by the loop decreases so as to conserve
magnetic flux. The frozen-in flux condition dΦ/dt = 0 can be proven by substituting
(2.29) into Faraday’s Law (2.11) to give

∂B

∂t
= ∇×(U ×B) , (2.30)

and using Gauss’s law and Stokes’ theorem.
A magnetic flux tube is the surface generated by moving any closed loop parallel

to the magnetic field lines it intersects at any given time. This surface encloses a
constant amount of magnetic flux. As a consequence of flux conservation, the same
fluid elements constitute a flux tube at different times; i.e., the fluid and magnetic
field lines move together. A further consequence of the frozen-in flux condition is
that all particles initially in a flux tube will remain in the same flux tube at later
times.

An equation of energy continuity is derived by taking the second order moment
of Boltzmann’s equation, to give

∂

∂t

(

1

2
ηU2 +

p

Γ − 1
+

B2

2µ0

+
1

2
ε0E

2

)

+∇·

(

1

2
ηU2U +

Γ

Γ − 1
pU +

1

µ0

E×B

)

= 0 .

(2.31)
where Γ is the adiabatic index which takes the value 5/3 for a monatomic gas.
Equation (2.31) assumes the adiabatic equation of state, for which there is no change
in internal energy of a fluid element as it propagates, with

p ∝ ηΓ . (2.32)

MHD approximations

The following approximations are often made to produce a tractable set of equations:

1. The displacement current term in Ampere’s law (2.12) is omitted. This ap-
proximation is sometimes called the “Darwin approximation” – an amusing
aside is that it corresponds to slow temporal evolution. This can be justified
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by comparing the LHS of (2.12) with the displacement current term:

|∇ × B| ≈
B

L
,

1

c2

∣

∣

∣

∣

∂E

∂t

∣

∣

∣

∣

≈
E

c2τ
,

where L and τ are the characteristic MHD length and time scales. Thus,

|∂E/∂t| /c2

|∇ × B|
≈

(

L

τ

)2
1

c2
� 1 ,

where E/B ≈ L/τ from Faraday’s law (2.11). Hence (2.12) reduces to

∇ × B = µ0J . (2.33)

2. Charge neutrality (ρ = 0) is typically satisfied in a plasma because the forces
associated with any unbalanced charges imply a potential energy per particle
that well exceeds the mean thermal energy per particle. The charge conser-
vation equation (2.20) then reduces to

∇·J = 0 . (2.34)

This also follows by taking the divergence of equation (2.33).

3. The approximation (2.28) or (2.29) to Ohm’s law is assumed.

Final MHD equations

The induction equation is derived by eliminating E from Faraday’s Law (2.11) and
Ohm’s Law (2.28), using (2.14), (2.33) and a vector identity:

∂B

∂t
= ∇×(U ×B) +

1

µ0σ
∇2B . (2.35)

E has now been eliminated and ρ = 0, so Poisson’s equation (2.13) does not con-
tribute to the final set of equations. Equation (2.14) is effectively a boundary
condition, since if ∇·B = 0 initially, then taking the divergence of (2.11) implies
that ∇·B remains zero henceforth.

It is remarked that (2.35) is often called a “dynamo” equation, since it can
describe the generation of magnetic fields by magnetic dynamos. Specifically, the
time evolution of B is related to spatial gradients in a velocity field U and B (often
related to turbulent fields) acting against a diffusive term.

After making the above approximations, the final set of MHD equations are the
induction equation and equations (2.19), (2.25) with ρ = 0, and (2.33):

∂η

∂t
+ ∇·(ηU) = 0 , (2.36)

η

[

∂U

∂t
+ (U·∇)U

]

= −∇p + J ×B + ηg . (2.37)

We now have one scalar and two vector equations in two scalar quantities (η,
p) and two vector quantities (B, U). We thus require one more scalar equation
to close the set of equations. This can either be the energy conservation equation
(2.31) or, as is commonly adopted, an equation of state for the fluid; in this case
the adiabatic equation of state (2.32).
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2.6 Magnetic pressure and tension

The magnetic force (per unit volume) in the equation for fluid motion (2.25) may
be re-expressed as

J ×B =
1

µ0

(∇×B)×B = −∇

(

B2

2µ0

)

+
1

µ0

(B · ∇)B . (2.38)

The first term corresponds to the magnetic pressure, with pB = B2/(2µ0). An
important diagnostic of a plasma is the plasma beta, defined as the ratio of plasma
thermal pressure to the magnetic pressure:

β =
p

B2/2µ0

. (2.39)

The second term can be further decomposed into two terms:

1

µ0

(B · ∇)B =
B

µ0

(b̂ · ∇)(Bb̂) = b̂ b̂·∇

(

B2

2µ0

)

+
B2

µ0

n̂

Rc
, (2.40)

where b̂ is a unit vector in the direction of B and n̂ is the normal pointing towards
the centre of curvature, defined by (b̂ · ∇)b̂ = n̂/Rc, where Rc is the radius of
curvature of the field line. The first term cancels out the magnetic pressure gradient
term in (2.38) in the direction along the field lines. This implies that the magnetic
pressure force is not isotropic; only perpendicular components of ∇pB exert force
on the plasma. The second term in (2.40) corresponds to the magnetic tension force
which is directed towards the centre of curvature of the field lines and thus acts to
straighten out the field lines. A suitable analogy is the tension force transferred to
an arrow by the stretched string of a bow. In this case the tension force pushes the
plasma in the direction that will reduce the length of the field lines. Put another
way, (2.38) becomes

J ×B = −∇⊥

(

B2

2µ0

)

+
B2

µ0

n̂

Rc
. (2.41)

2.7 MHD waves

For low-β plasmas, with β � 1 (also referred to as cold plasmas) the stresses in
the plasma are predominantly magnetic. We seek MHD wave solutions in a cold
magnetized plasma. In treating small-amplitude waves, the MHD equations are
linearized, keeping only terms linear in the amplitude of the wave (B1, η1, and
U1). We seek plane wave solutions; i.e., solutions that vary in space and time as
exp[−i(ωt−kx)] (assuming that the plane wave propagates in the x-direction, with
k = kx̂). Additional assumptions are that the background magnetic field B0 and
plasma density η0 are uniform, that there are no background currents or electric
fields, and that there is no bulk fluid motion. Our starting equations are:

∂η

∂t
+ ∇·(ηU) = 0 , (2.42)

η
∂U

∂t
=

1

µ0

(∇×B)×B , (2.43)

∂B

∂t
= ∇×(U ×B) . (2.44)
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After linearizing, and replacing the time and spatial derivatives by ∂/∂t → −iω and
∂/∂x → ik (which corresponds to considering the Fourier transformed quantities in
the plasma), these equations become

ωη1 − kη0U1x = 0 (2.45)

ωη0U1 − k(x̂(B1 ·B0) − B0xB1)/µ0 = 0 , (2.46)

ωB1 + k(B0xU1 − U1xB0) = 0 . (2.47)

Without loss of generality we assume that B0 lies in the x − z plane, with B0 =
(B0 cos θ, 0, B0 sin θ), where θ is the angle between B0 and k. After eliminating B1

from (2.46) and (2.47), the three equations relating components of U1 are written
in the following matrix form:





(

ω2/k2 − v2

A sin2 θ
)

0 v2

A sin θ cos θ
0

(

ω2/k2 − v2

A cos2 θ
)

0
v2

A sin θ cos θ 0
(

ω2/k2 − v2

A cos2 θ
)









U1x

U1y

U1z



 = 0 ,

(2.48)
where the Alfvén velocity vA satisfies

vA =

(

B2
0

µ0η0

)1/2

. (2.49)

The characteristics of the wave modes are obtained as solutions to this disper-
sion matrix, and to the so-called dispersion equation resulting from expanding the
determinant of the matrix. Specifically, each wave mode has a dispersion relation
ω(k) that satisfies the dispersion equation. Moreover, the solution must simultane-
ously satisfy each of the subsidiary equations. This means that the product of each
row of the matrix with U must equal zero. This can be used to constrain how U
varies for each wave mode, thereby describing the characteristic fluid motions that
make up the wave.

A solution for U1 exists only if the determinant of this matrix vanishes. This
yields two independent non-trivial solutions for ω as a function of k (known as the
dispersion relation):

ω2 = k2v2

A cos2 θ , ω2 = k2v2

A . (2.50)

The first solution corresponds to Alfvén waves. After substituting the dispersion
relation back into the matrix equation (2.48), we find that a solution for U1 is
only possible if U1x = U1z = 0. Thus Alfvén waves are shear waves that shift
plasma in the direction perpendicular to the plane containing the wavevector k
and the background magnetic field B0, and that propagate with a phase velocity
vφ = ω/k = vA cos θ. The wave motion in an Alfvén wave may be attributed to
an interplay between magnetic tension and plasma inertia. When a fluid element
is displaced relative to B0 the magnetic field is displaced with the fluid. The field
line becomes locally curved, which generates a tension force tending to straighten
out the field line. The inertia of the plasma causes it to overshoot, setting up an
oscillatory motion. The density of the fluid is unaffected by the propagating Alfvén
wave [U1x = 0 ⇒ η1 = 0 in (2.45)], and thus Alfvén waves are incompressible.
The group velocity (velocity at which information propagates and the direction for
energy flow) for Alfvén waves satisfies

vg =

(

∂ω

∂kx
,

∂ω

∂ky
,

∂ω

∂kz

)

= vAb̂ , (2.51)

so that the flow of energy associated with Alfvén waves is directed along the back-
ground magnetic field direction.
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The dispersion relation ω2 = k2v2

A corresponds to the magnetoacoustic mode.
Substituting the dispersion relation into (2.48) yields the requirement that U1y = 0
(for θ 6= 0), so that the fluid motion is in the plane containing k and B0. Because
U1x is not required to be zero, (2.45) implies that η1 is also nonzero; i.e., magne-
toacoustic waves affect the plasma density and are thus called compressional waves.
For magnetoacoustic waves,

vg = vAk̂ , (2.52)

so that wave energy may flow at an arbitrary angle to b̂, as opposed to Alfvén waves
(with vg ‖ b̂).

In a warm plasma, when β is no longer small relative to unity, the plasma
pressure terms can no longer be ignored. The pressure gradient term is reinserted
in (2.43) and the adiabatic equation of state (2.32) closes the set of equations. In
this case a linear analysis yields a dispersion relation with three solutions:

ω2 = k2v2

A cos2 θ ,
ω2

k2
=

1

2
(v2

A + c2

S) ±
1

2
[(v2

A + c2

S)2 − 4v2

Ac2

S cos2 θ]
1

2 , (2.53)

with the sound speed cS =
√

Γp0/η0. These three solutions correspond to the
Alfvén mode, and the fast (+) and slow (−) magnetoacoustic modes, so named
because the phase speeds satisfy

vfast ≥ vA ≥ vslow . (2.54)

In the limit of small background magnetic field strengths, fast mode waves become
gas sound waves, with the dispersion relation ω2 = k2c2

s. In the cold plasma limit,
fast mode waves become magnetoacoustic waves. In the small-field limit, slow mode
waves become magnetoacoustic-like, with the dispersion relation ω2 = k2v2

A cos2 θ.
These only have magnetoacoustic properties for small angles θ. In the cold plasma
limit, slow mode waves (along the field lines) become gas-sound-like, with ω2 =
k2c2

S cos2 θ.

Further Reading:
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Press, Cambridge, Chapters 11 & 12.

2. Kivelson, M. G. & Russell, C. T. (Eds), 1995, Introduction to Space Physics,
Cambridge University Press, Cambridge, Chapters 2 & 11.

3. Cravens, T. E., 1997, Physics of Solar System Plasmas, Cambridge University
Press, Cambridge, Chapter 4.
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