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A brief review is presented of methods for calculating nonlinear force-free fields,
with emphasis on a new, fast current-field iteration procedure. The motivation
is to reconstruct coronal magnetic fields using high resolution vector magnetic
field boundary data from a new generation of spectro-polarimetric instruments.
Methods of solar flare prediction are also reviewed, with focus on the need to re-
produce observed solar flare statistics. The event statistics method is described,
as well as an extension of the method to incorporate additional information,
based on Bayesian predictive discrimination.
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1. Introduction

Coronal magnetic fields around sunspots provide the energy for large scale

solar activity, in particular solar flares and coronal mass ejections, so there

is considerable interest in accurate descriptions of that field. Space weather

effects associated with flares and CMEs motivate solar flare prediction.

Flare prediction is currently in a nascent state, with existing prediction

methods being imprecise and of limited practical use. Improved knowledge

of the coronal magnetic field holds the promise of improved flare prediction.

It is difficult to infer the magnitude and direction of the coronal mag-

netic field. Measurements of the polarisation state of certain magnetically

sensitive spectral lines permit inference of the vector magnetic field in the

low solar atmosphere (at the photosphere or chromosphere) for regions on

the solar disk, subject to a number of uncertainties. There are subtantial

instrumental errors (in particular in the measurements associated with the

components of the field transverse to the line of sight), and uncertainties

due to approximations in the inversion of spectro-polarimetric measure-

ments to give magnetic field values.1–3 Also, the magnetic field transverse

to the line of sight is determined up to a 180 degree ambiguity, which is
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usually resolved by an ad hoc method.4 Despite these problems, photo-

spheric and chromospheric vector magnetic field values provide the most

detailed information available on the state of the magnetic field in solar

active regions.

A new generation of spectro-polarimetric instruments will soon provide

a wealth of photospheric vector magnetic field determinations with high

spatial resolution. The National Solar Observatory’s ground-based Synop-

tic Long Term Solar Investigations of the Sun Vector Spectromagnetograph

(SOLIS/VSM), as well as the space-based Solar Dynamics Observatory

Helioseismic and Magnetic Imager (SDO/HMI) and Solar-B Solar Opti-

cal Telescope (Solar-B/SOT) feature detectors with thousands of pixels on

a side. In principle measurements with these instruments may be used to

better understand magnetic energy storage in solar active regions, and to

improve flare prediction. However, the use of the data for these purposes

hinges on the ability to accurately ‘reconstruct’ the magnetic field in the

solar corona, based on the field values at the photosphere. This problem

presents a considerable challenge.

This paper reviews the approach to the problem based on the assump-

tion that the magnetic field in the corona (and at the boundary) is force-free,

i.e. has a vanishing Lorentz force. A new, fast approach to the solution of

the nonlinear force-free equations5 is described in Section 2, as well as the

prospects for application of the method to solar data. In Section 3, the state

of flare prediction is discussed, with emphasis on the problem of reproduc-

ing observed flare statistics. The event statistics method6,7 of prediction

is described. This is a simple approach which uses only the past history of

flare occurrence to make a prediction. A general approach for incorporating

additional information into this method is also outlined.

2. Reconstructing coronal magnetic fields

2.1. Nonlinear force-free magnetic fields

A force-free magnetic field B satisfies

(∇× B) × B = 0 (1)

as well as ∇·B = 0. Force-free fields provide a simple model for the coronal

magnetic field. The justification is that in most situations the Lorentz force

density J×B = µ−1
0 (∇×B)×B is expected to dominate over other forces

so that in the static situation the Lorentz force must be close to zero.
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The force-free equations may be re-written in the form:

∇× B = αB,

B · ∇α = 0, (2)

where α(r) describes the current distribution. The restrictive cases in which

α is zero and α is a constant describe potential and ‘linear’ force-free fields

respectively. The general case in which α varies with position describes

‘nonlinear’ force-free fields, which provide a minimal model for solar coronal

magnetic fields.

A key question is whether the force-free equations may be solved for

boundary conditions derived from solar spectro-polarimetric measurements.

This provides an approach to the problem identified in Section 1, i.e. the

reconstruction of the coronal field from lower boundary values. The appro-

priate boundary conditions for Equations (2) are the normal component

of B in the boundary, and the value of α prescribed over one polarity of

B, i.e. over one sign of the normal component of B. In principle α may

be estimated from differencing of observationally inferred vector magnetic

field values. For example, assuming the vector field is available at the plane

z = 0, then

α|z=0 = µ0 Jz|z=0 / Bz|z=0 , (3)

where

µ0Jz|z=0 =

(

∂By

∂x
−

∂Bx

∂y

)∣

∣

∣

∣

z=0

. (4)

A basic difficulty to be met is that the field at the photosphere, the

height of the measurements, is not force-free. The field is believed to become

force-free in the chromosphere, typically at a height of around 500 km.8 One

possible solution to this problem is ‘preprocessing’, i.e. alteration of the

boundary conditions to make them more consistent with necessary force-

free conditions.9

A variety of methods of solution of nonlinear force-free equations have

been investigated, including current-field iteration,10 magneto-frictional re-

laxation,11 and the optimization method.12 A recent test of methods13 ex-

amined their performance on a directly calculable axially symmetric non-

linear force-free field.14 The best performing method was a specific imple-

mentation of optimization.15

Although the different methods have been demonstrated to work on

test cases,13 they are computationally intensive, and hence slow. One sim-

ple measure of the speed of a method is the time taken, as a function of
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the size of the problem. Since we are concerned with three-dimensional cal-

culations we consider the time taken as a function of N , for a calculation

performed on a grid with N3 points. As reported in Ref. 13, the time taken

by specific implementations of the three methods mentioned above scaled

as N5 (optimization, magnetofrictional) and N6 (current-field iteration).

If full resolution data from the new instruments is to be used, then

the methods must cope with N ≈ 1k–2k. Based on the reported scalings,

calculations of this size may be unfeasible, although it should be noted

that most of the instruments provide full-disk data, and data extracted

for individual active regions will then be smaller in size. In any case there

is considerable interest in faster implementations of nonlinear force-free

methods. Recently Ref. 16 reported implementations of both optimization

and current-field iteration which scale as N4.

2.2. A faster current-field iteration method

Various implementations of current-field iteration10 have been devised. The

general approach consists of a Picard iteration solution of Equations (2).

Specifically, at iteration k the equations

∇× Bk+1 = αkBk (5)

Bk+1 · ∇αk+1 = 0 (6)

are solved, subject to the boundary conditions

ẑ ·Bk+1
∣

∣

z=0
= ẑ ·Bobs

∣

∣

z=0
(7)

and

αk+1
∣

∣

z=0,Bz>0
= αobs

∣

∣

z=0,Bz>0
, (8)

where Bobs and αobs denote the observed values of these quantities at the

boundary z = 0. For simplicity we restrict attention to a problem in the

half space z > 0. We also specify the boundary conditions using αobs on

the positive polarity, although either polarity may be used.

The different implementations of current-field iteration differ in their

methods of solution of Equations (5) and (6), as well as in their handling of

the boundary conditions both at the lower boundary, and at the side and

top boundaries of the computational grid.

Recently a particularly simple and fast current-field iteration procedure

has been described.5 The method involves separating the field at a given
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iteration into Bk+1 = B0 +Bk+1
c , where B0 is the potential field satisfying

ẑ · B0|z=0 = ẑ ·Bobs
∣

∣

z=0
. (9)

The non-potential component Bk+1
c may be constructed via solution of

∇× Bk+1
c = µ0J

k
c (10)

where

Jk
c =

{

αkBk/µ0 for z ≥ 0
[

−Jk
cx(x, y,−z),−Jk

cy(x, y,−z), Jk
cz(x, y,−z)

]

for z < 0.
(11)

The construction (11), which is due to Ref. 17, ensures that

ẑ · Bk+1
c

∣

∣

z=0
= 0, (12)

as required by Eqs. (7) and (9).

The vector potential Ak+1
c corresponding to Bk+1

c may be obtained by

solving the vector Poisson equation via the Fourier transform method. Since

the current density Jk
c is specified in all space, no explicit boundary condi-

tions are required, which makes this step particularly fast — the time taken

scales as N3 log N . For comparison, two earlier implementations of current-

field iteration using an integral solution to Ampere’s law and solution by

finite differences both perform this step with a N6 scaling.13

The other equation in the current field iteration procedure, Equa-

tion (6), may be solved by field line tracing. For each point ri in the compu-

tational grid, the field line threading the point is traced in both directions.

If the field line leaves the grid via the sides or top, then α(ri) is set to zero.

If the field line connects to the lower boundary at both ends, then α(ri)

is assigned based on the boundary values αobs at one end of the field line.

The time taken by field line tracing for all points on the grid scales as N4.

Hence solution of Equation (6) is slower than solution of Equation (5), and

determines the overall time taken by the implementation.

The starting point for the method is the potential field B0, i.e. Bk=0 =

B0. The potential field is obtained from the boundary condition ẑ · Bobs
∣

∣

z=0

and needs to be calculated just once. More complete details of the method

are provided in Ref. 5.

The new method has been tested5 by application to a known nonlinear

force-free field,14 and to a simple bipole. The tests have confirmed the ac-

curacy of the method, and the N4 scaling of the time taken by the method.

Typically the method converges in about 10 iterations.

Figure 1 presents an example of two calculations performed with the

new method. The boundary conditions on ẑ ·B|z=0 are the same in each
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case, and consist of two Gaussian patches of field with positive polarity and

two with negative polarity, representing two nearby bipoles. The color in

the background indicates the value of the normal component of the field in

the boundary, with light green showing regions with positive polarity and

dark green showing regions with negative polarity. The boundary conditions

on α are different in the two cases. In the upper case, there are two patches

of positive α centered on the positive poles of each bipole, and α on the

positive polarity is otherwise zero. In the lower case, there is a positive patch

of α centered on the positive pole at lower right, and a negative patch of α

centered on the positive pole at upper left, and α on the positive polarity is

otherwise zero. The values of α on the negative polarity are an outcome of

the calculation. In each case field lines are shown as blue curves, traced from

boundary points with non-zero current density. Also shown, by transparent

orange surfaces, are isocontours of the magnitude of the current density.

The two cases shown in Figure 1 represent nearby bipoles with the

same, and with opposite, sign of current helicity (J · B), and the figure

illustrates that the connectivity of current carrying bipoles depends on the

currents which flow. The figure also illustrates a breaking of symmetry.

For the upper case, the boundary conditions have a 180-degree rotational

symmetry, which is reflected in the symmetry of the calculated nonlinear

force-free field. In the lower case the boundary conditions no longer have

the 180-degree symmetry, and consequently the field is non-symmetric.

Preliminary tests of the application of the new method to solar boundary

data have also been performed. When the method is applied to solar vector

magnetic field data, it is found that the current-field iteration does not

converge. This may be due to the large errors in the estimated boundary

values of α, which can lead to large (spurious) localised values of the current

density. It also may be due to the non-force-free nature of the boundary

data, as mentioned in Section 2.1. When the boundary data is preprocessed,

or just smoothed, the localised currents are reduced and the method is

found to converge. However, in this case the boundary conditions have been

altered, so it is unclear how accurate the resulting coronal field model is. A

basic problem with the application of nonlinear force-free methods to solar

boundary data is that there is no unambiguous measure of the accuracy

of the result. The application of the new method to solar boundary data

continues to be investigated.
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Fig. 1. Examples of nonlinear force-free fields calculated with a new, fast current-field
iteration procedure. This case involves two current-carrying bipoles. In the upper panel,
the boundary conditions on the current are that the two bipoles have the same sign of
current helicity. In the lower panel, the bipoles have the opposite sign of current helicity.
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3. Solar flare prediction

3.1. Existing methods of flare prediction

A variety of properties of solar active regions are known to correlate with

flare occurrence. For example, active regions with certain categories of mag-

netic complexity18 and certain sunspot classes19 are more likely to produce

flares, in particular large flares. Other properties associated with flaring

include the length of the sheared neutral line,20 flux emergence,21 moments

of quantities derived from vector magnetic field maps,22 and the power-law

index of the spectrum of line-of-sight magnetic field values.23

Although these (and other quantities) correlate with flaring, there is

no certain indicator that an active region will flare, and existing methods

of flare prediction are probabilistic. The US National Oceanic and Atmo-

spheric Administration uses an ‘expert system’ to issue flare predictions.

This system incorporates sunspot classification, as well as a variety of ob-

servations and rules of thumb. Predictions are made for the probability of

occurrence of at least one flare within a day with a peak 1-8 Å flux between

10−5 W m−2 and 10−4 W m−2 as measured by the Geostationary Observa-

tional Enviromental Satellite (an M class flare), and for the probability of

occurrence of at least one flare with a within a day with a peak 1-8 Å flux

greater than 10−4 W m−2 (an X class flare). These probabilities may be

labelled ǫM−X and ǫX respectively.

Observed solar flare statistics provide an important constraint on flare

prediction. It is well known that flares follow a power-law peak flux distri-

bution.24 In other words the number N(S) of events per unit time and per

peak flux S is described by N(S) = const × S−γ , or equivalently by

N(S) = (γ − 1)λiS
γ−1
i S−γ , (13)

where λi = λi(t) =
∫

∞

Si
N(S)dS is the total rate of events above size Si.

The power-law index γ is typically found to be slightly less than two.25

Assuming Poisson occurrence in the prediction interval T = 1 day, the

probabilities ǫM−X and ǫX may be related to corresponding rates λM−X and

λX:

ǫM−X = 1 − e−λM−XT , ǫX = 1 − e−λXT . (14)

Using Equation (13), the rates λM−X and λX are given by

λM−X = λiS
γ−1
i

(

S−γ+1
M − S−γ+1

X

)

(15)

and

λX = λiS
γ−1
i S−γ+1

X , (16)



December 19, 2006 19:23 WSPC - Proceedings Trim Size: 9in x 6in ms

9

where SM and SX are the peak fluxes associated with M and X events

respectively. From Equations (14)–(16) the quantity

R = ln(1 − ǫM−X)/ln(1 − ǫX) (17)

is equal to

R = (SM/SX)−γ+1 − 1, (18)

which is independent of λi and hence constant in time. This provides a

simple check of the compatibility of predictions with the power-law size

distribution.

Figure 2 plots the quantity R = ln(1 − ǫM−X)/ln(1 − ǫX) for the pre-

dictions made by NOAA for the year 2005. The power-law index for the

GOES peak fluxes was estimated for all events in 2005 above size M using a

maximum likelihood method,26 and found to be γ = 1.88±0.08. The corre-

sponding value of R predicted by Equation (18) is shown in Figure 2 by the

horizontal line. The NOAA predictions are rounded, i.e. are restricted to

the values 0.01, 0.05, 0.10, 0.15, etc., and some of observed variation is due

to this rounding. However, there is more variation than expected on this

basis, and hence the NOAA predictions are inconsistent with power-law

statistics.

3.2. Event statistics method

The event statistics method of flare prediction6,7 is a particularly simple

approach which is consistent with observed flare statistics. A prediction is

made just on the basis of events already observed.

The method requires an estimate λ1 of the rate of small events (events

above size S1) and of γ, and then predictions are made for the occurrence

of big events, i.e. events above size S2. According to Equation (13) the rate

of big events is given, in terms of the rate of small events, by

λ2 = λ1 (S1/S2)
γ−1 . (19)

This estimate may be made even if no big events have been observed. Ac-

cording to Poisson statistics, the probability of at least one big event in a

time T is then

ǫ = 1 − exp(−λ2T ). (20)

Equations (19) and (20) provide the required prediction.

The advantage of the method is that, if many small events are observed,

the prediction (20) will be accurate. In particular, if M events are involved
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Fig. 2. Values of R = ln(1 − ǫM−X)/ln(1 − ǫX) for daily NOAA predictions for 2005.
The horizontal line shows the value of R predicted by Equation (18).

in the estimation of the rate λ1, then it is easy to show that the fractional

error in the prediction is

σǫ/ǫ ≈ M−1/2. (21)

In Ref. 6 a Bayesian version of the event statistics method is developed.

Given a sequence of events with sizes s1, s2, ..., sM above size S1 which

occur at times t1, t2, ..., tM , the Bayesian version permits calculation of a

posterior distribution P (ǫ) for the quantity ǫ. If the rate of small events is

determined based on a recent interval T ′ during which M ′ events occurred

with a constant mean rate, then the posterior distribution is given by6

P (ǫ) = C [− ln(1 − ǫ)]
M ′

(1 − ǫ)(T ′/T)(S2/S1)
γ−1

−1

× Λ

[

−
ln(1 − ǫ)

T

(

S2

S1

)γ−1
]

, (22)

where Λ(λ1) is the prior distribution for λ1, and C is the normalization

constant, determined by the requirement
∫ 1

0 P (ǫ)dǫ = 1.
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Ref. 7 describes an implementation of the method for whole-Sun pre-

diction of GOES events, and a test of the method on the GOES record for

1976-2003. For each day in this period predictions ǫM−X and ǫX were made

based on preceding events, and the results were compared with the histor-

ical record of whether M and X events did or did not occur. Comparison

was also made with the corresponding NOAA predictions for 1987-2003.

The event statistics method was found to out-perform the NOAA method

for prediction of X class flares. However, on average the predictions made

by the method (as well as by the NOAA method) were slightly too large,

and the predictions were also conservative: for all days in 1976-2003, ǫX was

less than 0.5.

3.3. Incorporating additional information

The event statistics method uses only the past history of occurrence of

small flares. It neglects all of the flare indicators discussed above, including

sunspot classification and magnetic complexity. It should be possible to

improve the method by incorporating additional information.

A systematic method for classifying whether an active region is flare-

producing or not has recently been presented.22 The method uses discrimi-

nant analysis, an orthodox statistical technique for classification. In Ref. 22

discriminant analysis was applied to moments of quantities derived from

vector magnetic field maps to classify active regions as flare-producing or

non-flare producing.

The Bayesian version of discriminant analysis is predictive discrimina-

tion.27 Predictive discrimination assigns a probability to membership of a

class based on observed properties, and a training sample of class mem-

bers with corresponding properties. In common with discriminant analysis,

it assumes continuous distributions for the properties, so it is restricted

to observed properties which vary continuously (which excludes categori-

cal properties such as sunspot classification). Predictive discrimination is

more accurate than discriminant analysis, in particular for small training

samples, because it takes into account variability in the training sample.28

Predictive discrimination offers a Bayesian approach to incorporating

additional information into the event statistics method of flare prediction.

In brief this may be achieved as follows. We consider the relevant classes to

be ‘flare producing above size S1 within time T ’ and ‘not flare producing

above size S1 within time T ’. These classes may be denoted i = f1 and

i = f1, in an obvious notation. Following the event statistics approach,

the observed rate λ1 of events above size S1 provides an initial guess ǫ1
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for membership of the class f1. The initial guess, which we denote P (i =

f1), plays the role of a a prior probability. We assume that the observed

data x used to make the classification is a d-dimensional vector, with each

element taking a continuous value. A training sample {xi,jk}, where j =

1, 2, ..., Ni labels the number of vector data points and k = 1, 2, ..., d labels

the components of each vector, is assumed to be available. Each j refers to

observations for a particular active region. The components enumerated by

k are then relevant properties of the active region, for example moments

of quantities derived from vector magnetic field maps, following Ref. 22.

Assuming the data is multinormally distributed, predictive discrimination

assigns the probability for membership of the class i as27

P (i|x,xi,Ci) ∝ P (i)Pi(x|xi,Ci), (23)

where xi and Ci denote the unbiased estimators of the sample means and

covariance matrices:

xi =
1

Ni

Ni
∑

j=1

xi,j (24)

and

Ci,jk =
1

Ni − 1

d
∑

l=1

(xi,jl − xi,l)(xi,kl − xi,l). (25)

For the general case of unequal sample means and covariance matrices

for different classes the term Pi(x|xi,Ci) on the right hand side of Equa-

tion (23) may be expressed as27

Pi(x|xi,Ci) ∝

(

Ni

N2
i − 1

)
1

2
d Γ

[

1
2Ni

]

Γ
[

1
2 (Ni − d)

]

|Ci|
1

2

×

[

1 +
Ni

N2
i − 1

δ(x|xi,Ci)

]

−
1

2
Ni

, (26)

where

δ(x|xi,Ci) = (x − xi)
′C−1

i (x − xi) (27)

is the squared Mahalanobis distance, a measure of the distance of the point

x from the mean of the sample. Equations (23)–(27) provide an estimate

for the probability of at least one flare above size S1 during time T , based

on both observed event statistics and the available additional information.

Equations (19) and (20) may then be used to convert this into a prediction

for the probability of at least one event above size S2 during the time T .
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Although the method outlined above gives a general prescription for

incorporating additional information into the event statistics method, to

date the approach has not been implemented and tested on data. It remains

to be seen whether improved predictions result.

4. Summary

This paper presents a brief review of the problem of reconstructing coronal

magnetic fields from vector magnetic field boundary data based on the

nonlinear force-free model, and of the problem of flare prediction.

A new fast method for calculating nonlinear force-free fields is reviewed.5

The time taken by the method scales as N4, for calculations on grids with

N3 points. The motivation for developing fast methods of calculation of

nonlinear force-free fields is the reconstruction of coronal magnetic fields

based on high resolution vector magnetic field boundary data, such as

that shortly to be available from new spectro-polarimetric instruments.

At present there are unresolved difficulties in applying nonlinear force-free

methods to solar data, and these are briefly described.

The event statistics method of flare prediction is also reviewed.6,7 This

simple procedure uses only the past time history of flaring to make pre-

dictions, which have the advantage of being consistent with observed solar

flare statistics. A generalization of the method to include additional infor-

mation, based on Bayesian predictive discrimination, is also described. The

generalization has not appeared in the literature before. The prescription is

general, and should permit the incorporation of a variety of additional ob-

servational information. It remains to be implemented and tested on solar

data.
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