Lecture 5: Stellar structure

Senior Astrophysics

2018-03-14

Senior Astrophysics [Lecture 5: Stellar structure](#page-27-0) 2018-03-14 1 / 28

Outline

[Stars](#page-2-0)

- [Simplifying assumptions](#page-5-0)
- [Stellar structure](#page-6-0)

[Virial theorem](#page-12-0)

[Website of the Week](#page-15-0)

[Timescales](#page-16-0)

[Structure again](#page-22-0)

[Next lecture](#page-27-0)

Stellar structure and evolution $(7 \text{ lectures} + 2 \text{ labs})$

- **1** How stars work
- ² How stars evolve
- ³ Stellar remnants

Motivation

[http://heasarc.gsfc.nasa.gov/docs/RXTE_Live/class.html\]\[http://heasarc.gsfc.nasa.gov/docs/RXTE_Live/class.htmlh]([[http://heasarc.gsfc.nasa.gov/docs/RXTE_Live/class.html)ttp://heasarc.gsfc.nasa.gov/docs/RXTE_Live/class.html]]

What is a star?

- Held together by self-gravity
- Collapse is resisted by internal pressure
- Since stars continually radiate into space, there must be a continual energy source

Simplifying assumptions

- Stars are spherical and symmetrical all physical quantities depend only on r
- Ignore rotation
- Ignore outside gravitational influences
- Uniform initial composition

no initial dependence of composition on radius

• Newtonian gravity

no relativistic effects

• Stars change slowly with time can neglect d/dt terms

To describe an isolated, static, symmetric star, we need four equations:

- **Q** Conservation of mass
- ² Conservation of energy (at each radius, the change in the energy flux equals the local rate of energy release)
- **3 Equation of hydrostatic equilibrium** (at each radius, forces due to pressure differences balance gravity)
- **Equation of energy transport** (relation between the energy flux and the local gradient of temperature)

In addition, we need to describe

- ¹ Equation of state (pressure of the gas as a function of its density and temperature)
- ² Opacity (how transparent the gas is to radiation)
- \bullet Nuclear energy generation rate as $f(r, T)$

Conservation of mass

- If m is the mass interior to radius r, then m, r and ρ are not independent, because $m(r)$ is determined by $\rho(r)$.
- Consider a thin shell inside the star, radius r and thickness dr

Volume is $dV = 4\pi r^2 dr$, so mass of shell is

$$
dm = 4\pi r^2 dr.\rho(r)
$$

or

$$
\frac{dm}{dr} = 4\pi r^2 \rho(r)
$$

the equation of mass conservation

- \bullet Consider a small parcel of gas at a distance r from the centre of the star, with density $\rho(r)$, area A and thickness dr.
- Outward force: pressure on bottom face $P(r)A$

• Inward force: pressure on top face, plus gravity due to material interior to r:

$$
P(r+dr)A + \frac{Gm(r)dm}{r^2}
$$

$$
= P(r+dr)A + \frac{Gm(r)\rho Adr}{r^2}
$$

Hydrostatic equilibrium

• In equilibrium forces balance, so

$$
P(r)A = P(r + dr)A + \frac{Gm(r)\rho Adr}{r^2}
$$

i.e.

$$
\frac{P(r+dr) - P(r)}{dr}A dr = -\frac{Gm(r)}{r^2}\rho(r)Adr
$$
\nor\n
$$
\frac{dP}{dr} = -\frac{Gm}{r^2}\rho
$$

the equation of hydrostatic equilibrium

Estimate for central pressure

• We can use hydrostatic equilibrium to estimate P_c : we approximate the pressure gradient as a constant

$$
\frac{dP}{dr} \sim -\frac{\Delta P}{\Delta R} = \frac{P_c}{R} = \frac{GM}{R^2} \rho
$$

Now assume the star has constant density (!): so

$$
\rho_c = \bar{\rho} = \frac{M}{V} \sim \frac{M}{\frac{4}{3}\pi R^3}
$$

then so

$$
P_c \sim \frac{3GM^2}{4\pi R^4}
$$

For the Sun, we estimate $P_c \sim 3 \times 10^{14} \text{ N m}^{-2} = 3 \times 10^9 \text{ atm}.$

- Gravity has a very important property which relates the gravitational energy of a star to its thermal energy.
- \bullet Consider a particle in a circular orbit of radius r around a mass M.

• Potential energy of particle is

$$
\Omega=-\frac{GMm}{r}
$$

• Velocity of particle is
$$
v = \sqrt{\frac{GM}{r}}
$$
 (Kepler)

The virial theorem

So kinetic energy is

$$
K = \frac{1}{2}mv^2 = \frac{1}{2}\frac{GMm}{r}
$$

i.e.
$$
2K = -\Omega
$$
 or $2K + \Omega = 0$.

• Total energy

$$
E = K + \Omega
$$

=
$$
\Omega - \frac{\Omega}{2} = \frac{\Omega}{2} < 0
$$

• *Consequence*: when something loses energy in gravity it **speeds up!**

The virial theorem

 \bullet

The virial theorem turns out to be true for a wide variety of systems, from clusters of galaxies to an ideal gas; thus for a star we also have

$$
\Omega + 2U = 0
$$

where U is the total internal (thermal) energy of the star and Ω is the total gravitational energy.

- \bullet So a *decrease* in total energy E leads to a decrease in Ω but an *increase* in U and hence T, i.e. when a star loses energy, it heats up.
- Fundamental principle: stars have a negative heat capacity: they heat up when their total energy decreases.
- This fact governs the fate of stars

NASA ADS

http://adsabs.harvard.edu/abstract_service.html Querying the astronomical literature

There are three important timescales in the life of stars:

- \bullet dynamical timescale the time scale on which a star would expand or contract if the balance between pressure gradients and gravity was suddenly disrupted
- \bullet thermal timescale how long a star would take to radiate away its thermal energy if nuclear reactions stopped
- \bullet nuclear timescale how long a star would take to exhaust its nuclear fuel at the current rate

Timescales

• Dynamical timescale:

the timescale on which a star would expand or contract if it were not in equilibrium; also called the free-fall timescale

$$
\tau_{\rm dyn} \equiv \frac{\rm characteristic \; radius}{\rm characteristic \; velocity} = \frac{R}{v_{\rm esc}}
$$

Escape velocity from the surface of the star:

$$
v_{\rm esc} = \sqrt{\frac{2GM}{R}}, \qquad \text{so}
$$

$$
\tau_{\rm dyn} = \sqrt{\frac{R^3}{2GM}}
$$

For the sun, $\tau_{\text{dyn}} \simeq 1100 \text{ s}$

Timescales

4 Thermal timescale:

- the timescale for the star to radiate away its energy if nuclear reactions were switched off: also called the Kelvin-Helmhotz timescale
- Total gravitational energy available

$$
E_{\rm grav} \sim \frac{GM^2}{R}
$$

If the star radiates energy at $L(\mathrm{J/s})$, then it can keep up this rate for

$$
\tau_{\rm th} \sim \frac{E_{\rm grav}}{L} \sim \frac{GM^2}{RL}
$$

For the sun, $\tau_{\text{th}} \sim 3 \times 10^7$ y ≪ age of Earth.

¹ Nuclear timescale: times to exhaust nuclear fuel at current rate.

$$
\tau_{\rm nuc} \sim \frac{\eta M_c c^2}{L}
$$

where η is an efficiency factor for nuclear fusion: $\eta \sim 0.7\%$ (see next lecture), and M_c is the mass of the core. For the sun, $\tau_{\text{nuc}} \sim 10^{10}$ y

• For stars,

 $\tau_{\text{dyn}} \ll \tau_{\text{th}} \ll \tau_{\text{nuc}}$

- \bullet $\tau_{\text{dyn}} =$ timescale of collapsing star, e.g. supernova
- \bullet τ_{th} = timescale of star before nuclear fusion starts, e.g. pre-main sequence lifetime
- \bullet τ_{nuc} = timescale of star *during* nuclear fusion, i.e. main-sequence lifetime
- Most stars, most of the time, are in hydrostatic and thermal equilibrium, with slow changes in structure and composition occurring on the (long) timescale τ_{nuc} as fusion occurs.
- If something happens to a star faster than one of these timescales, then it will NOT be in equilibrium.
	- e.g. sudden addition of energy (nearby supernova?), sudden loss of mass (binary interactions)

We have derived two of the equations which define the structure of stars:

$$
\frac{dP}{dr} = -\frac{GM}{r^2}\rho
$$
 hydrostatic equilibrium
\n
$$
\frac{dM}{dr} = 4\pi r^2 \rho
$$
 mass conservation

• We need two more equations

Equation of energy generation

- \bullet Assume the star is in thermal equilibrium, so at each radius T does not change with time.
- Rate of energy generation/unit mass $=\varepsilon$. Then

$$
dL = 4\pi r^2 \rho dr \times \varepsilon
$$

so

$$
\frac{dL}{dr} = 4\pi r^2 \rho \varepsilon
$$

the equation of energy generation

Shell mass $dm = 4\pi r^2 \rho dr$ Luminosity at $r: L(r)$ Luminosity at $r + dr$: $L(r) + dL$

Equation of energy transport

- Fourth equation describes how energy is transported through the layers of the star, i.e. how the gas affects the radiation as it travels through.
- Depends on local density, opacity and temperature gradient.
- Will not derive here, but quote result:

$$
\frac{dT}{dr} = -\frac{3}{4ac} \frac{\kappa \rho}{T^3} \frac{L}{4\pi r^2}
$$

the equation of energy transport. α is called the radiation constant and has the value

$$
a = \frac{4\sigma}{c} = 7.566 \times 10^{-16} \text{ Jm}^{-3} \text{K}^{-4}
$$

where $\sigma = 5.670 \times 10^{-8}$ W m⁻² K⁻⁴ is the Stefan-Boltzmann constant. Comes from considering radiation pressure.

- This gives us four equations in four unknowns $m(r)$, $L(r)$, $\rho(r)$ and $T(r)$ — so enough for a solution, provided we know $P(\rho, T)$, κ and ε .
- Also need boundary conditions:
	- centre of star $(r \to 0): M \to 0, L \to 0$
	- surface of star $(r \to R_*)$: $T \to T_s$, $P \to 0$, $\rho \to 0$
- The calculation of full stellar models is a very hard problem, and must be done numerically, since in general κ and (especially) ε are strong functions of density and temperature.
- Some progress can be made by making simplifying assumptions, e.g. if pressure is only a function of density, then the first two equations can be solved independently from the equations involving temperature.
- We will be investigating numerical models of stars in Lab 2.

Next lecture

• is our first computer lab. This will be held in

SNH Learning Studio 4003

where we will be exploring the Saha-Boltzmann equation.

- Review your 2nd year Matlab notes, and perhaps bring them to the lab for reference.
- Please read the exercises before the lab. There's a lot in there (mostly repeat of lecture material), so don't want to lose time.
- \bullet If you can't make Friday's session, there's also a lab on now (10–11 am Wednesday).