Elevator

The loaded cab of an elevator has a mass of $3.0 \times 10^{3} \mathrm{~kg}$ and moves 210 m up the shaft in 23s at constant speed.

At what average rate does the force from the cable do work on the cab?

Solution: The elevator is moving at constant speed, so $a=0$, so by N1L there is no net force on the cab.

So the tension in the cable is

$$
\begin{aligned}
T & =m g \\
& =3000 \times 9.8=29.4 \mathrm{kN}
\end{aligned}
$$

Now the work done by the cable moving the elevator 210 m is

$$
W=F d=29,400 \times 210=6.17 \times 10^{6} \mathrm{~J}
$$

The power (= rate of doing work) is

$$
\begin{aligned}
P=W / \Delta t & =6.17 \times 10^{6} \mathrm{~J} / 23 \mathrm{~s} \\
& =2.7 \times 10^{5} \mathrm{~W} \\
& =270 \mathrm{~kW}
\end{aligned}
$$

Alternatively: the elevator moves 210 m in 23s at constant speed, so we can calculate that speed:

$$
v=\Delta x / \Delta t=210 \mathrm{~m} / 23 \mathrm{~s}=9.13 \mathrm{~ms}^{-1}
$$

so

$$
P=F v=29.4 \times 10^{3} \times 9.13=2.7 \times 10^{5} \mathrm{~W}
$$

