next up previous
Next: Charge and current densities Up: Basic equations Previous: Boltzmann's equation

Maxwell's equations


    
$\displaystyle {\mbox{\boldmath$\nabla \times E$ }}$ = $\displaystyle - \frac{\partial {\bf B}}{\partial t}
\mbox{\hspace{2.5cm} \rm (Faraday's Law)}$ (3.12)
$\displaystyle {\mbox{\boldmath$\nabla \times B$ }}$ = $\displaystyle \mu_{0} {\bf J} + \frac{1}{c^{2}} \frac{\partial {\bf E}}{\partial t}
\,\,\,\, \mbox{\rm\hspace{1.2cm} (Ampere's Law)}$ (3.13)
$\displaystyle {\mbox{\boldmath$\nabla \cdot E$ }}$ = % latex2html id marker 2308
$\displaystyle \rho/\epsilon_{0}
\,\,\,\, \mbox{\rm\hspace{2.5cm} (Poisson's equation)}$ (3.14)
$\displaystyle {\mbox{\boldmath$\nabla \cdot B$ }}$ = 0 (3.15)



Iver Cairns
1999-08-09