
Chapter 1

Orbit Theory and Particle

Drifts

1.1 Outline of Lecture 1

Aim: To develop a detailed knowledge of particle motion in homogeneous elec-
tric and inhomogenous magnetic fields. This is required to understand plasma
motions, the development of magnetospheric structure and the solar wind, particle
acceleration at shocks, and instabilities that produce plasma waves, all of which will
be studied in future lectures.

Expected Learning Outcomes: Students are expected to be able to

• understand particle motions in terms of the parallel motion and transverse
drifts perpendicular to B of the gyrocenter, and the gyromotion;

• show why particle energization can occur due to the combination of electric
fields and plasma drifts,

• derive and explain quantitatively the physics of the E×B drift,

• explain the physics of the ∇B and curvature drifts and use the associated
formulae,

• describe what adiabatic invariants are and why they are important,

• use conservation of the first adiabatic invariant (the magnetic moment) to
describe particle motion in a magnetic bottle/mirror.

The lecture is ordered as follows:

1. General Considerations.

2. Motion with E‖ 6= 0 and homogeneous B.

3. E×B and F⊥ ×B drifts. .

4. Drifts in inhomogeneous magnetic fields.

5. Adiabatic invariants.

6. Magnetic mirror physics.
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1.2 General Considerations

We start with motions of an individual, charged plasma particle subject to im-
posed, external electric, magnetic and other force fields. This is obviously simpler
than studying motions of finite volumes of plasma since the electromagnetic and
collisional interactions between charged plasma particles are ignored. Collective
(wave) effects are also ignored here. Nevertheless, since many plasmas are collision-
less and since a plasma’s internal electromagnetic interactions are often unimportant
compared with macroscopic fields (e.g., Earth’s magnetic field), orbit theory often
describes the motion of the plasma as a whole. An example of this is the flow of
the solar wind plasma across its magnetic field.

Orbit theory is also important in understanding the motion of energetic particles,
which often act as test particles, and in understanding the acceleration of particles.
Examples of the former are the motion of energetic particles in the ring current
and Van Allen radiation belts in Earth’s inner magnetosphere, while the latter is
exemplified in drift acceleration at shock waves. Orbit theory is also important
in understanding the creation of particle distributions with free energy for wave
growth, for instance in Earth’s foreshock.

The basic equation for orbit theory is the (non-relativistic) equation of motion

m
dv

dt
= q(E + v ×B) (1.1)

for a particle with mass m and charge q moving in an electric field E and magnetic
field B. This can be generalized by including additional forces such as gravity. The
total derivative in equation (1.1) can be separated into

d

dt
=

∂

∂t
+ v.∇ . (1.2)

One basic technique in orbit theory is to write the particle velocity as the sum

v = v‖ + vD + vg (1.3)

of three terms. The first, v‖, is the particle velocity parallel to the magnetic field,
otherwise known as the particle’s parallel velocity. The second, vD , is the drift

velocity of the particle’s gyrocenter perpendicular to the magnetic field:
this drift velocity is associated with electric or other forces directed perpendicular
to the magnetic field or else temporal or spatial variations in electric or magnetic
fields. The sum v‖ + vD describes the velocity of the particle’s gyrocenter. The
final component, vg , is the particle’s intrinsic gyromotion or cyclotron motion
about its gyrocenter (and the magnetic field).

From Eq. (1.1) the time rate of change of a particle’s kinetic energy is

d

dt
(1/2mv2) = v.m

dv

dt
= qv.E . (1.4)

Energization of a particle therefore requires, as expected, the existence of a non-
zero electric field such that at least one component of the particle velocity produces
a non-zero value of v.E. Parallel electric fields can therefore energize particles.
However, from Eq. (1.3) it can be seen that drifts vD can also lead to particle
energization.

The analyses below assume time-stationary macroscopic fields E and B unless
otherwise stated. Time-varying electric and magnetic fields are sometimes impor-
tant, however. For instance, time-varying electric fields lead to so-called “beta-
tron” acceleration. Moreover, the time-varying fields of plasma waves can accelerate
charged particles.
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1.3 Motion with E‖ 6= 0 and homogeneous B.

Consider time-stationary plasmas with E = E‖ 6= 0 and a homogeneous magnetic
field B. Then the parallel equation of motion becomes

m
dv‖

dt
= qE‖ , (1.5)

which has the obvious solution v‖(t) = v‖(0) + qE‖t/m.
Importantly the motions parallel and perpendicular to the magnetic field are,

in general, separable. The velocity perpendicular to the magnetic field, v⊥, (with
v = v‖ + v⊥ and v⊥.B = 0) obeys the equation

m
dv⊥

dt
= qv⊥ ×B . (1.6)

Differentiating Eq. (1.6) with respect to time and using Eq. (1.1) it is easily shown
that

m
d2v⊥

d2t
= −

q2B2

m
v⊥ = −mΩ2

cv⊥ . (1.7)

This equation shows simple harmonic motion; the quantity

Ωc =
qB

m
(1.8)

is the (angular) gyrofrequency or cyclotron frequency of the particle. The gyrofre-
quency depends on B and the charge and mass of the particle. The gyromotion
itself can be constructed by noting that the particle’s acceleration is perpendicular
to B and v⊥ (Eq. 1.6), and that the sense of rotation depends on the charge.

The gyroperiod Tc is the time for a particle to complete one cyclotron orbit:

T =
2π

Ωc

. (1.9)

Note that the electron gyroperiod is ∼ 2000 times shorter than the proton gyrope-
riod.

The gyroradius rL (or Larmor radius) is the radius of a particle’s circular
motion about a magnetic field line. By integrating Eq. (1.7) it can be shown that

rL = mv⊥/qB = v⊥/Ωc . (1.10)

Moreover it can be shown that the sense of a particle’s gyromotion relative to the
magnetic field direction depends on the particle’s charge, either using Eq. (1.6) or
directly using Eq. (1.1): protons gyrate in a clockwise sense and electrons in an
anti-clockwise sense. (Figure 1.1)

Consider next the current and magnetic field associated with charged particles
gyrating about the magnetic field. Inspection quickly shows that these fields are
anti-parallel to the background magnetic field B. Accordingly, plasma particles are
diamagnetic.

Exercise 1.1: Construct the gyromotion of a particle in coordinate space and
show that the definition (1.10) for rL is correct.

Exercise 1.2: Demonstrate that Figure 1.1 is correct, with protons and electrons
gyrating in opposite screw senses relative to the magnetic field direction, and that
plasma particles are diamagnetic.
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Figure 1.1: Figures showing that positively charged particles gyrate clockwise rela-
tive to B while negatively charged particles gyrate anti-clockwise.

1.4 Motion in static, homogeneous situations with

B 6= 0 and other forces

This subsection treats particles moving in a time-invariant and homogeneous plasma
subject to magnetic and other forces F. These other forces include gravity and
electric forces. The parallel and perpendicular motions can be split as before:

m
dv‖

dt
= F‖ , (1.11)

m
dv⊥

dt
= F⊥ + qv⊥ ×B . (1.12)

The parallel motion has the obvious solution. For the perpendicular motion we
assume the form (1.3), i.e., v⊥ = vD +vg . Substituting in and rearranging leads to

m
dvD

dt
+ m

dvg

dt
= (F⊥ + qvD × B) + qvg ×B . (1.13)

Cancelling out the terms corresponding to the usual gyromotion, then the solution
for a time-invariant drift is given by

F⊥ = −qvD ×B . (1.14)

Requiring that vD be perpendicular to B then leads to the solution

vD =
1

q

F ×B

B2
. (1.15)

That is, particles subject to a force with a component perpendicular to the
magnetic field will undergo a steady drift perpendicular to both the magnetic field
and the perpendicular component of the force. Figure 1.2 shows that this can
be understood physically in terms of the force increasing (decreasing) v⊥ at the
top (bottom) of the orbit relative to the direction of the force, thereby increasing
(decreasing) rL and so the length of the orbit perpendicular to both B and F⊥, and
leading to a net drift of the particle in the direction given by Eq. (1.15).

The most common application of (1.15) is when the force is provided by a
perpendicular electric field E. Since F⊥ = qE⊥ then, the so-called E × B drift

velocity is then

vE×B =
E×B

B2
. (1.16)
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Figure 1.2: Drift motions due to an arbitrary force F perpendicular to the magnetic
field.

Very importantly, the E × B drift velocity is independent of the particle charge.
This means that plasma may undergo bulk motion due to an E × B drift, with
no charge separation or build-up of ambipolar electric fields due to particles with
different charges or energies moving with different drift velocities.

The solar wind provides a specific illustration of this: usually the solar wind
velocity vsw is not parallel to the magnetic field Bsw, and it may be asked how
the plasma can maintain itself in this state. The way it does this is by setting up
and maintaining a “convection electric field” Esw = −vsw × Bsw in the plasma.
Then the component of the solar wind’s velocity perpendicular to the magnetic
field is just vsw,⊥ = Esw×Bsw/B2. The motion of an individual solar wind plasma
particle is thus made up of a speed parallel to Bsw, the E × B drift velocity and
the gyromotion.

Exercise 1.3: Show that the situation of a magnetic field perpendicular to a
gravitational field g leads to a plasma drift with velocity vD = g × B/qB2 that is
mass independent but dependent on charge. What are the possible consequences of
this charge dependence?

1.5 Motion in non-uniform magnetic fields

Often the magnetic field in a plasma varies with position or time, causing the
plasma particles to drift, change their perpendicular kinetic energy, and sometimes
to be energized as a result. First consider the effects of a gradient in magnetic field
strength that is perpendicular to B.

1.5.1 ∇B drift, with ∇B ⊥ B

Figure 1.3 shows the path of a positively charged particle in this case. Assuming
that the gradient is on scale lengths long compared with the gyroradius, i.e.,

rL � L = (|∇B|/|B|)
−1

, (1.17)
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Figure 1.3: Drift velocity v∇B due to a gradient ∇B in the strength of the magnetic
field B.

the orbit is almost circular but does not quite close. Since rL ∝ B−1, rL will be
slightly smaller where B is larger and slightly larger where B is smaller. This causes
the orbit to drift in the direction of its gyromotion where rL is larger, perpendicular
to both ∇B and to B. A negatively charged particle drifts in the opposite direction.
The physics is thus clear.

Quantitatively we write

B(r = xc) = b (B(0) + xc.∇B(0)) , (1.18)

where xc represents the unperturbed gyromotion and b is the unit vector of the
magnetic field. The perpendicular equation of motion is

dv⊥

dt
= Ωcv⊥ × b

(

1 +
xc.∇B

B(0)

)

. (1.19)

The particle velocity is now written as v⊥ = vc + v⊥,1, where vc represents the
unperturbed gyromotion and v⊥,1 is the sum of the drift velocity and any first order
perturbations to the gyromotion. Substituting into (1.19), grouping the zeroth order
terms and deleting them, and ignoring the second order term v⊥,1 × bxc.∇B(0),
the first order equation becomes

dv⊥,1

dt
= Ωc

(

vc × bxc.∇B/B(0) + v⊥,1 × b
)

. (1.20)

This equation is next averaged over a gyroperiod and v⊥,1 is identified as the con-
stant drift velocity vD, so that the time derivative becomes zero and the drift
velocity obeys the equation

vD × b = − < vc × b
xc.∇B

B(0)
> . (1.21)

Now vc = −xc ×bΩc and the time-average of the righthand term simplifies consid-
erably since the x component of the term < xcxc.∇B >becomes

< xc,xxc.∇B > = < xc,x(xc,x

(

∂B

∂x
+ xc,y

∂B

∂y

)

> (1.22)
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Figure 1.4: Definition of the radius of curvature Rc of a curved magnetic field line
and the centrifrugal force Fcurv experienced by a particle moving along this field
line.

= < x2
c,x >

∂B

∂x

= r2
L/2

∂B

∂x
, (1.23)

with a similar result for the y component. That is,

VD × b =
r2
LΩc

2

∇B

B
. (1.24)

Rearranging, the final result is

v∇B =
1

2

mv2
⊥

qB

B×∇B

B2
(1.25)

=
1

2
v⊥rL

B×∇B

B2
. (1.26)

The ∇B drift speed therefore depends on the charge, mass, and perpendicular
energy of the particle, as well as on the magnetic field strength and the scale length
of the gradient. This drift can therefore cause currents and charge separations in
the plasma. Moreover, as seen below, the combination of a convection electric field
and a ∇B plasma drift can lead to particle acceleration.

1.5.2 Curvature drifts

Curvature of magnetic field lines can also cause plasma particles to drift. Figure
1.4 shows this situation. As the particle moves along a curved magnetic field line it
experiences a centrifugal force due to the field curvature, and therefore drifts per-
pendicular to both the centrifugal force and B as described in Section 1.4. Defining
the radius of curvature Rc of the magnetic field lines as in Figure 1.4, then

Fcurv =
mv2

‖

R2
c

Rc (1.27)

and so

vcurv =
m

q

v2
‖

R2
c

Rc ×B

B2
. (1.28)
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This curvature drift can be parallel or anti-parallel to convection electric fields,
thereby leading to energy gains or losses, respectively, as for the ∇B drift discussed
in Section 1.5.1. This is particularly relevant to shock-drift acceleration, discussed
more below and in Lectures 5, 10, 11 and 13.

Gradients in a plasma’s magnetic field are constrained by Ampere’s Law ∇×B =
µ0j (neglecting the displacement current). This means that plasma particles are
almost always subject simultaneously to both the ∇B and curvature drifts, not just
one or the other. In particular, relating the radius of curvature to the magnetic
field using Ampere’s Law and assuming no plasma currents (invalid for a shock
wave but valid for most of Earth’s magnetosphere), Eq. (1.28) may be rewritten

vcurv =
m

q

v2
‖

B

B ×∇B

B2
. (1.29)

Combining Eqs (1.25) and (1.29), the combined drift is

vB =
m

2qB
(v2

⊥ + 2v2
‖)

B ×∇B

B2
. (1.30)

This drift velocity naturally leads to charge separations and currents in plasmas,
as well as dispersion of particles with different parallel & perpendicular energies,
charges, and masses.

1.5.3 Applications

The ∇B and curvature drifts mean that it is not possible to confine a plasma using
curved magnetic fields or, more generally, in magnetic field configurations such that
B × ∇B 6= 0. One reason is that the charge-dependent drift vB causes charge
separations and the build up of an ambipolar electric field perpendicular to B,
which then leads to an E × B drift of the plasma across the magnetic field. These
problems are of great interest in laboratory and fusion plasma physics.

These drifts are very important in understanding the motions of particles in the
solar wind and Earth’s magnetosphere. For instance, the ∇B and curvature drifts
are important in understanding particle acceleration at shock waves and current
sheets (where it is reiterated that j 6= 0, so that (1.30) is invalid), as well as in the
injection of energetic particles close to Earth during magnetic substorms.

One specific illustration of how these drifts lead to particle acceleration involves
shock waves, which have increases in magnetic field strength and direction across
the shock (Figure 1.5). Consider the solar wind flow onto Earth’s bow shock, in
particular. The drift v∇B is into the page for protons and out of the page for
electrons. Notice now that the solar wind’s convection electric field is into the page.
Accordingly, the proton drift velocity v∇B is parallel to Esw while for electrons
V∇B,e is anti-parallel to Esw. In both cases, the drifting particles can gain energy,
consistent with Eq. (1.4). This mechanism is called shock-drift acceleration. It
is important in understanding energetic particles in the solar corona, interplanetary
medium, and probably the outer heliosphere, as well as in Astrophysics. (The figure
also shows that curvature drifts lead to energy losses in this case.)

1.6 Adiabatic invariants

For periodic motions the theory of mechanics shows that quantities called actions
can remain invariant for slow changes in the system. An action J can be defined in
terms of generalized coordinates qgen and conjugate momenta pgen by

J =

∫

pgendqgen , (1.31)
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Figure 1.5: Illustration of the E×B, gradient and curvature drifts relevant to a
fast mode shock wave like Earth’s bow shock. Note that the gradient drift leads
to acceleration of the particles by the solar wind’s convection electric field Esw =
−vsw × Bsw, but that the curvature drift leads to energy losses.
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where the integral is over one period of the motion. A particle’s gyromotion is
one example of a periodic motion amenable to the construction of an approximate
constant of the motion (or invariant). Defining qgen to be the gyrophase φ, then
the angular momentum pgen = l = mv⊥rL is the conjugate momentum. Inserting
these variables into (1.31) and integrating one finds

J = 2π
m

q

v2
⊥

B
=

4πm

q
µ (1.32)

for slowly varying B. The quantity

µ =
v2
⊥

2B
(1.33)

is known as the first adiabatic invariant of a plasma particle. This implies that a
particle’s perpendicular energy W⊥ = 1/2mv2

⊥ is proportional to B if µ is constant.
Another, perhaps more obvious derivation of the first adiabatic invariant is as

follows. Assume that the particle sees a small change in B during a gyroperiod,
whether due to temporal or spatial variations in B. I.E.,

1

Ωc

|
∂B

∂t
B−1| � 1 . (1.34)

The change in W⊥ in one gyroperiod is

∆W⊥ = q

∫

E.dl (1.35)

=
∂

∂t

(

q

∫

S

B.dS

)

. (1.36)

Assuming the orbit size changes very little in one gyroperiod then

∆W⊥ ≈ qπr2
L

∂B

∂t
. (1.37)

Since the change in B in one gyroperiod is

∆B =
2π

Ωc

∂B

∂t
(1.38)

then ∆W⊥ = W⊥∆B/B or

∆

(

W

B

)

= 0 = ∆(µ) . (1.39)

That is, µ is a constant.
Other adiabatic invariants also exist. The second or longitudinal adiabatic

invariant is associated with the periodic bouncing of particles in magnetic flux tubes
and magnetic bottles. Here

JL = m

∫

v‖dz (1.40)

A third adiabatic invariant can be associated with the periodic drift of a particle
(due to ∇B and curvature drifts) around a dipole magnetic field. It is useful for
studying particle motions in Earth’s magnetosphere but is not addressed further
here.
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Figure 1.6: A magnetic bottle, with maximum field Bm at large negative z and
minimum field B0 in the center. Particles move with constant µ and energy in this
bottle, so that particles with pitch-angles in the loss cone are lost from the bottle.

1.7 Magnetic Mirrors: the effects of ∇B ‖ B

This section addresses the mirroring properties of a longitudinal gradient in the
magnetic field; i.e., the effects of gradients in magnetic field strength parallel to
B. Two ways of doing this are: first, using conservation of µ and the total kinetic
energy, and second, by considering the forces acting on the particle.

Figure 1.6 shows a cylindrically symmetric situation with ∇B ‖ B (half of a
so-called magnetic bottle). Note the field lines becoming closer together as |B|
increases. For slow gradients and time-independent fields µ = v2

⊥/2B is constant
and there is no electric field E, so that the kinetic energy m(v2

‖+v2
⊥)/2 is a constant.

Thus

v2
‖(z) = v2

‖(0) − v2
⊥(0)

[

B(z)

B(0)
− 1

]

(1.41)

since
v2
⊥(z)

B(z)
=

v⊥(0)2

B(0)
. (1.42)

Thus the particle’s parallel speed decreases as it moves into the region with increased
B, and may actually vanish at some point (the magnetic mirror point). This
point depends on the initial parallel and perpendicular speeds and the fractional
increase in B. A particle reaching its magnetic mirror point is reflected and retraces
its trajectory - note that Eq. (1.41) is for v‖(z)2.

The pitch angle α of a particle is defined by

tan α =
v⊥
v‖

(1.43)

with
sin α = v⊥/v . (1.44)

Exercise 1.4: Use conservation of the magnetic moment and energy to show that
a particle will be reflected from a (slow) magnetic field gradient if

sin2 α ≥
B(0)

B(z)
. (1.45)
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The other approach toward magnetic mirroring is to directly study the forces on
a particle. In the case of axisymmetric fields, Bθ = 0 and Bz and Br are related by
∇.B = 0. When ∂Bz/∂z is slowly varying one may integrate the equation ∇.B = 0
to obtain

Br = −
r

2

∂B

∂z
. (1.46)

Then

F‖ = qv⊥Br = −µ
∂B

∂z
. (1.47)

This equation shows that the particle experiences a decrease in v‖, is potentially
reflected, and (for constant µ and kinetic energy) increases in v⊥ when it enters a
region with larger B.

Note that not all particles entering a region with increased B will be reflected.
Instead, those with sin2α < B(0)/B(z) will not be reflected but will instead pass
through the magnetic enhancement. Define Bm, the maximum field in the trap, to
be the mirror field: then particles with

sin2α0 = sin2
(

tan−1[v⊥(0)/v‖(0)]
)

<
B(0)

Bm

(1.48)

will not be mirrored. This leads to loss cone anisotropies in the particle distribution
function. Importantly, these loss cone anisotropies can drive plasma waves and radio
emissions which are observable, including Earth’s Auroral Kilometric Radiation and
various solar emissions. Moreover, generation of the waves and scattering by the
wave fields drive the plasma particles into the loss cone, leading to loss of plasma.
Magnetic mirroring can also lead to particle energisation, especially at shock waves.
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