

LOFAR Tied Array All-sky Survey (LOTAAS) for Pulsars and Fast Transients

Ben Stappers Jodrell Bank Centre for Astrophysics, University of Manchester

LOFAR Pulsar Working Group

LOTAAS Team

- Jason Hessels ASTRON/Universiteit van Amsterdam **Ben Stappers University of Manchester** Cees Bassa ASTRON
 - Sally Cooper University of Manchester
- Daniele Michilli ASTRON/Universiteit van Amsterdam
- Vlad Kondratiev ASTRON
- Joeri van Leeuwen ASTRON/Universiteit van Amsterdam
 - - Chia Min Tan University of Manchester
 - Sander ter Veen ASTRON

Collaborator

Robert Lyon University of Manchester

- Sotiris Sanidas Universiteit van Amsterdam/University of Manchester

LOTAAS

- All northern sky survey for pulsars, RRATs and fast transients. 12 HBA sub-stations of superterp • Observing band 119-151 MHz, 12 kHz channels. • Sampling time 492 µs.
- 1 hour dwell time.

Field of View (FoV)

The University of Manchester

- - ▶ 3 sub-array pointings (SAP), incoherent beams (IB), 30 deg² FoV
 - 183 tied-array beams (TAB), 61 per SAP, 9 deg² FoV
 - 12 free TAB per SAP, known sources within SAP or "random"

222 beams per pointing — First SKA-like pulsar survey

75°

- Pass A completed (survey area covered by IBs)
- 648/651 pointings completed in Pass B
- 60 pointings into Pass C

• 3 passes of 651 pointings required to cover the northern sky with TABs

- Cartesius (SURFsara) 1500 nodes (24 cores, 64 GB RAM)
- Dedispersion of DM 0-500 pc cm⁻³
- Single pulse searches
- ~3 hours processing time/beam/node

Data Processing

Fourier-based periodicity searches with presto — no acceleration searches yet

Periodicity Candidates

- ~20,000 periodicity candidates per pointing expecting 40 million candidates for the whole survey
- Machine Learning (ML) classifier to choose the best candidate
- First ML classifier
 - 8 features from pulse profile & DM curve
 - Very Fast Decision Tree (VFDT) binary classifier
 - ~500 candidates per pointing
- Less effective with pulsars with wide pulse profile

Lyon et al., 2016, Cooper 2017, PhD Thesis

New ML classifier :

- Third class for known RFI instances
- Ensemble of 5 VFDT classifiers
 - trained with 5 separate training set
 - pulsar if +ve in 3+ classifiers
- Improved performance
 - Pulsar recall rate from \bullet 96.2% to 98.7%
 - False positive rate from 2.5% to 1.1%

Periodicity Candidates

8 new features from time & sub-band vs phase plots + 4 new features from DM curve

Tan et al. 2018, accepted

Single Pulse Candidates

- ~10⁸ events detected per pointing
- Single pulse classifier that uses :
 - a. "Classical" techniques event grouping in DM-time space, removal of low-DM events, comparison between TABs etc.
 - b. ML approach with 5 features to analyse grouped events
- ~20 candidates per pointing produced, diagnostic plots generated for inspection
- 8 new sources + ~80 known pulsars identified by classified

Michilli et al. 2017, in prep.

n

Single Pulse Candidates

Diagnostic Plot of J0139+33

LOTAAS Discoveries

- >60 pulsars discovered via periodicity searches
- 5 RRATs from single pulse searches (Michilli) •
- Timing of new pulsars by LOFAR lacksquare
- Only ~half detected & timed by Lovell (1.4 GHz) — steep spectrum
- Discoveries are on \bullet

http://www.astron.nl/lotaas

LOTAAS Overview Paper + 50 first discoveries Sanidas et al. 2017, in prep.

- 1st LOTAAS binary
- 33 ms period
- DM ~3 pc cm⁻³ ullet
- ~3.0 days orbit

- Minimum companion mass ~0.87 M_{Sun}
- Position coincides with WD
- Not detected by Lovell at 1.4 GHz & 300 MHz

LOTAAS Discoveries — J1658+36

2 Pulses of Best Profile

LOTAAS Discoveries — J0250+58

The University of Manchester

• 23.5 s period — longest ever

• DM ~45 pc cm⁻³ — Small duty cycle ~0.4%

GBT — 350 MHz

- highly variable in nature
- weak and strong pulses • LOFAR — 150 MHz
- nulls
- little variation in pulse shape lacksquare

LOTAAS Discoveries — J0250+58

LOTAAS Discoveries — J0250+58

The University of Manchester

Right Ascension (J2000)

- LOFAR Two-metre Sky Survey (LoTSS; Shimwell et al. 2017) observed the location of PSRJ0250+58
- Images every 1 second so can effectively "fold" the images at the pulse period
- Accurate position
- Can get Pdot without waiting for a year

Observational setup:

- complex voltage data
- 7 tied-array beams
- 21 HBA core stations
- 115 to 155 MHz (200 subbands)
- target MSP-like _y-ray sources
- 2×20min per target

Processing:

- 80 coherent DM trials up to 80 pc/cc
- 40k incoherent DM trials
- frequency-domain acceleration searches with Presto
- processing on DRAGNET GPU cluster (8 h per 20 min observation)

LOFAR MSP survey of Fermi y-ray sources

1st Discovery:

- P = 2.43 ms (412 Hz), DM = 22.90 pc/cc
- Isolated pulsar
- Steep radio spectrum ($\alpha < -2.8$)
- Radio and γ-ray profiles are aligned

3rd Discovery:

- P = 4.75 ms (211 Hz), DM = 25.54 pc/cc
- Binary system: Pb = 5.84 d,
- probable white dwarf companion (Mc $\sim 0.2 \text{ M}\odot$)
- Brighter at 350 MHz, also seen at 1.4 GHz
- Sky location interesting for pulsar timing arrays

LOFAR MSP survey of Fermi y-ray sources

- PSR J0952–0607
- P = 1.41 ms (707 Hz),
- DM = 22.41 pc/cc
- Bright! (S/N ~ 50 in 20 mins)
- Binary system: Pb = 6.42 hr,
- Mc 0.02 Mo ; Black Widow
- Highly variable optical companion
- Steep spectrum (Sv \propto v α $\alpha \sim -3.3$)
- Proximity excellent for follow-up
- optical through masses measure spectroscopy/light curve modelling).

Fastest pulsar in Galactic Field

Bassa et al. 2017

LOTAAS Discoveries - P-Pdot Diagram

- Pulsar discoveries at extremes.
- J0250+58 isolated
- High proportion of LOTAAS discoveries near the death line.

- New LOTAAS v2.0 pipeline (Sanidas)
 - various improvement (~30% performance increase)
- Higher time resolution
 - reducing sampling time to 246 µs or 164 µs
- Expanding survey coverage to $\delta = -10$
- Adding Fast Folding Algorithm (FFA) to search pipeline (Vincent Morello)
 - FFA more sensitive to long period pulsar and/or pulsars with small duty cycle

- LOTAAS is the deepest low-frequency pulsar survey ever performed \bullet
- >60 pulsars + 5 RRATs found so far expect >100 new discoveries by end of \bullet survey
- Timing of the discoveries to understand the population better \bullet
 - some evidence for closer to death line than other pop^{ns}
- Optical follow up on J1658+36 planned
- X-ray follow up to J0250+58 planned •
- LOFAR is also able to find MSPs and extreme ones at that. \bullet
- Interesting limits on "variable" sources too from multi-pass.
- Great indicator of the potential of success of SKA1-LOW

SKA1-LOW

The University of Manchester

SKA1_LOW expected to find:

2500-3500 pulsars

400-900 MSPs

SKA1-Low (Normal Population) all-sky

The Un

Sky Coverage

- 648/651 pointings completed in Pass B
- 60 pointings into Pass C