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1. Scientific Context: SKA and its Pathfinders

Collecting area: 1 sq. km Slide credit: Cyril Tasse

Resolution: ~10 mas a 1 GHz —
(a 1 euro coin at 400 kilometers) %%

Sensitivity: ~50 nJy/Beam
[8 hours, 500Mhz bandwidth]

Field of view: ~ 1 degré carré
360.000x360.000 pixels images
Survey speed: x10.000

A few huge radiotelescopes prototypes
of the SKA:

- MeerKAT (under construction)
- LOFAR (operational)
- ASKAP



2. New era, new challenges

Key challenges for new era of radio
interferometry. Importantly:

- SKAta volume...

€ 100 times global internet
traffic!lll

€ Need on-the-fly
calibration + imaging

€ Can only realistically
store final science
products (images)

-> Need fast, efficient algorithms
to improve final images.

Image credit: Cyril Tasse



3. Why bother with interferometry?

Arecibo - Antenna

| arrays
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Julien Girard
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Slide credit:
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4. What is a visibility?

{ oJf

Zernike van Cittert theorem:
Visibility measures one Fourier mode
of the sky brightness distribution!




Slide credit:
Julien Girard

5. The UV-plane

V
Visibilities are Fourier modes: i e
they live in Fourier space
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6. Calibration

Measurements are voltages - not physical flux!

To correct, modern approach is Radio Interferometer’'s Measurement Equation:
HgH H
Vg = (§ 'Es,Ks,Bs KSqESq) G/ +N

= E JSszJg + N (cf. Smirnov 2011 and associated papers)

which implies assuming that measured voltage is linear function of sky signal. All
above are 2x2 complex-valued matrices: calibration consists of solving for Jsp.



6. Calibration

Measurements are voltages - not physical flux!

To correct, modern approach is Radio Interferometer’'s Measurement Equation:

VPq:=GEK Esp il KHEH)GqH"'N

p_sp sp - S sq —sq
%%
Js

= E szJg + N (cf. Smirnov 2011 and associated papers)
S

which implies assuming that reaasi ['4 ualtage is linear function of sky signal. Al

above are 2x2 complex-value B;igggt‘iiissi“ alibration consists of solving for J_




7. The Noise-PSF

Variance in the image-plane (and
covariance between pixels) can be
described as the Fourier transform,
from dudv-space to dlom-space, of
the visibility covariance matrix.
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Uncorrected Noise-PSF for o. = 6400s
a) Simulated noise-map b) Predicted noise-ma
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9. Weighting scheme: change the noise-PSF

Noise-PSF Cross-Section, m=0
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Right: well-calibrated data

Real data (8-hour LOFAR HBA,
139 MHz, observation of the
Bootes deep extragalactic field,
1 data point per 1 second, 8
channels)

Emission:
Synchrotron, free-free

Image:

1.5” resolution

Calibration solutions:
1 per 8 seconds per 4 channels

RMS in image:
5.87mJy/beam
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Right: poorly-calibrated data

Real data (8-hour LOFAR HBA,
139 MHz, observation of the
Bootes deep extragalactic field,
1 data point per 8 second, 8
channels)

Emission:
Synchrotron, free-free

Image:

1.5” resolution

Calibration solutions:
1 per 2 minutes per 4 channels

RMS in image:
86.4mJy/beam
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Right: sensitivity-optimal

Real data (8-hour LOFAR HBA,
139 MHz, observation of the
Bootes deep extragalactic field,
1 data point per 8 second, 8
channels)

Emission:
Synchrotron, free-free

Image:

1.5” resolution

Calibration solutions:
1 per 2 minutes per 4 channels

RMS in image:
9.69mJy/beam
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Right: artefact-optimal

Real data (8-hour LOFAR HBA,
139 MHz, observation of the
Bootes deep extragalactic field,
1 data point per 8 second, 8
channels)

Emission:
Synchroton, free-free

Image:

1.5” resolution

Calibration solutions:
1 per 2 minutes per 4 channels

RMS in image:
15.8mJy/beam
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Right: well-conditioned sens.opt.

Real data (8-hour LOFAR HBA,
139 MHz, observation of the
Bootes deep extragalactic field,
1 data point per 8 second, 8
channels)

Emission:
Synchrotron, free-free

Image:

1.5” resolution

Calibration solutions:
1 per 2 minutes per 4 channels

RMS in image:
6.69mJy/beam
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11. So it works on badly-calibrated data

Mrms: 0.007Jy/bm
&

0.016 0.052 0.088 0.12 .2 1 -3 0.016 0.052 0.088 0.12



12. And on well-calibrated data?

rms: 0.136 Jy/bm




12. And on well-calibrated data?

Factor f 1.8 |mprovement
_for free

rms: 0.239 Jy/bm S




13. Future prospects

1.

Estimating the covariance matrix is tricky: the problem is ill-conditioned. There
are ways to improve conditioning which merit further investigation.

Impact of sky model incompleteness is still an open question. Relatedly:

Understanding the noise-PSF as the artefact distribution leads to an obvious
question: what is then its relationship to ghosts? This is currently under
investigation, in collaboration with Trienko Grobler.

Preprint: https://arxiv.org/abs/1711.00421



And it lets us see...

Radio galaxy!

Image credit: Cyril Tasse



And it lets us see...

Dramatic radio galaxy

Image credit: Cyril Tasse




And it lets us see...

Bent radio galaxy

Bent-tailed (?) radio
galaxy

Image credit: Cyril Tasse




Supernova remnant!

Image credit: Cyril Tasse




And it lets us see...

???7?°7?7?°7?°7?7°

Image credit: Cyril Tasse



Conclusion

Thank you for your time! Questions?



6. What do we measure? Siide credit

Julien Girard
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6. What do we measure?




7. Calibration

Measurements are voltages - not physical flux!

To correct, modern approach is Radio Interferometer’'s Measurement Equation:
HgH H
Vg = (§ 'Es,Ks,Bs KSqESq) G/ +N

= E JSszJg + N (cf. Smirnov 2011 and associated papers)

which implies assuming that measured voltage is linear function of sky signal. All
above are 2x2 complex-valued matrices: calibration consists of solving for Jsp.



Fourier sampling with
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8. Noise in interferometric images

My contribution was to characterise, analytically, how the noise in the image is
distributed as a function of the data used to make the image.

¥, =F " Spwy, (k¥ +n)

Y=).U
b



8. Noise in interferometric images

My contribution was to characterise, analytically, how the noise in the image is
distributed as a function of the data used to make the image.

Vector containing [ VlSlblIlty_]

Tt g, =F Sbwb{(ﬁw ; g)}

baseline
Pixel values in o = : ,
) . — Fourier Noise
flna_lnrl'zzlgual :> y E : yb kernel
i
b Weight Vector containing all

applied to residual visibilities
baseline b




8. Noise in interferometric images

My contribution was to characterise, analytically, how the noise in the image is
distributed as a function of the data used to make the image.

Inverse FFT

Vector containing
residual pixel
values for 1
baseline

Grlddlng matrix, maps a single visibility to the UV-grid

Yy :[:FHSb}wb (kyy +m)

Pixel values in
final residual
image

Inverse Fourier ]
y — y Transform
E : b
b




9. Noise in interferometric images

Apply Cov{ } operator: gives a relationship between pixel covariance matrix and
visibility covariance matrix. This gives us the Cov-Cov relationship:

Cov{y} = 7 ( T (%b [Cov{¥}]es + 71%02) Co

+ ). cbfbr[COV{’?}]bbffbb’)

b,b' b



9. Noise in interferometric images

Apply Cov{ } operator: gives a relationship between pixel covariance matrix and
visibility covariance matrix. This gives us the Cov-Cov relationship:

| Variance of visibility b |

Cov{y} = 7 T(fbbi COV{7}]bb}+w§02)Cb

+ Z Cbgb{[cov{;?}]bb’}rbb’

b,b' b

Covariance between
visibilities b and b’




9. Noise in interferometric images

Apply Cov{ } operator: gives a relationship between pixel covariance matrix and

visibility covariance matrix_This nives 1is the Cav-Cov relationship:
Contains squared flux term

and weights for visibility b

Cov{y} = 7 T ({beb [Cov{d} o + ngQ)Cb

+ > o [Cov{FHbe Fow
b,b%{}

Contains product of model fluxes and
weights between visibilities b and b’




9. Noise in interferometric images

Apply Cov{ } operator: gives a relationship between pixel covarjaneseaateivand

visibility covariance matrix. This gives us the Cov-Cov relations

Convolution matrix
associated with
visibility b

U
Cov{y} = 7 T(%b COV{’?’}]bb+wa )Cb

+ D) ngb’[cov{;?}]bb’gbb’

b,b' b

Diagonal is covariance
fringe betweenb and b’




