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Challenges in 
low-frequency imaging

● Large FOV
– Large w-values
– Harder to deconvolve

● Large fractional bandwidth
– Requires multi-frequency approaches

● Large data volumes
● LF beams time dependent & difficult to model
● Calibration errors are higher
● Requires direction-dependent cal



  

Multi-frequency deconvolution

● Common approach in MF deconvolution is imaging / 
predicting “frequency derivative” images (“nterms>1”, the Sault & 
Wieringa (1994) method).

      That results in:
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Instead, WSClean splits the 
bandwidth and creates 

separate images for each part:
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(Similar strategy is used by B. Cotton’s OBIT)
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Instead, WSClean splits the 
bandwidth and creates 

separate images for each part:

● Of course, these 
contain the same 
information

(they can be 
converted from one
to the other)

● Algorithm to clean 
second option is 
simpler.
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Multi-scale kernel



  

Fast multi-scale deconvolution

● In Cornwell’s (2008) multi-scale method, 
the appropriate scale is determined 
every minor iteration

● Cornwell’s algorithm can be sped up by 
keeping the scale fixed “for a while”

● This is the algorithm implemented in 
WSClean



  

● Comparison of WSClean MF single scale and multi-scale cleaning
● Simulated bandwidth of 30 MHz at 150 MHz.
● MWA layout, 2 min snapshot

Offringa and Smirnov (2017)



Deconvolution performance

Offringa and Smirnov (2017)



  

Local RMS cleaning



  

Local RMS cleaning



  

Polarized cleaning
● Standard iquv imaging: minimize sum pol^2

– Available in CASA, WSClean, ...

● WSClean supports some RM cleaning 
methods

– E.g., sum-over-squared Q/U pol & freq cleaning

● Since 2.6, also “linked polarization” cleaning
– Base cleaning of subset of pols on others

– E.g. search components in XX/YY,
also remove from XY/YX.



Automatic scale-dependent masking

● Normal cleaning requires manual threshold 
tweaking, manual masking, etc…

● Masking is hard when structures are diffuse

● Move towards non-interactive, fully automatic 
cleaning

● “Automatic scale-dependent masking” :
– For each scale, a mask is accumulated

– Clean normal to 3-5σ, continue to 0.5σ with a 
scale-dependent mask. In one run.



Automatic masking

● Threshold is relative to RMS estimate

● RMS estimate can be “local” when RMS is 
expected to change over the image

(avoids picking up calibration errors)

● Avoids interaction & somewhat-arbitrary 
selection of features, etc.

● Allows deeper & more stable cleaning of 
complex structures. Limits clean bias.

● Can be done in multi-frequency mode



Auto-masking on point sources

Restored image

From data by T. Franzen



Auto-masking on point sources

2-sigma residual

From data by T. Franzen



Auto-masking on point sources

auto-masked residual

From data by T. Franzen



  

                       Restored                                                     Residual

Automasking VLBI example

Data by J. P. McKean
 and C. Spingola



Offringa and Smirnov (2017)



Offringa and Smirnov (2017)



  

Image Doman Gridding (IDG)

Van der Tol, Veenboer & Offringa (to be submitted)



  

Image Doman Gridding (IDG)
● Compared to normal gridding, IDG does (on first order) not change the 

amount of operations to be performed

● However, parallelizes extremely well on GPUs

● W & A-term (beam/ionosphere) correction “for free”

● Results in very high gridding accuracy:

Van der Tol, Veenboer & Offringa (to be submitted)



30k x 30k image, gridded with IDG using GPUs
By Bas van der Tol et al.

20 min for gridding/predicting
Can include beam correction without added cost

Connected to WSClean – allows all cleaning methods
IDG is publicly available (library that can be linked to WSClean)



Fully multi-scale multi-frequency cleaned IDG 14k x 14k result

14k x 14k image

(7o x 7o, about up to first null)

LOFAR, 20 MHz 6 h

Gridding with IDG on GPU

250 µJy noise

IDG 0.2 + WSClean 2.5

(Both are publicly available)



Zoom in to 2o x 1.5o



  

Implementation of IDG

1) Connect IDG to WSClean

2) Apply beam corrections during 
gridding

3) Apply DD ionospheric corrections



  

Implementation of IDG

1) Connect IDG to WSClean

2) Apply beam corrections during 
gridding

3) Apply DD ionospheric corrections

Connection to WSClean finished: all cleaning modes are supported.

(work by Van der Tol, Offringa, Veenboer, Dijkema and others)



  

Applying a-term with IDG
Next step: apply LOFAR beam

Normal imaging with w-stacking gridder 
(no beam)

LOFAR beam applied during imaging stage
Producing “optimally weighted” image

● Working & to be released in next WSClean version
● Applies full-Jones antenna beam in forward and backward imaging step
● No extra computational cost(!)
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Implementation of IDG

1) Connect IDG to WSClean

2) Apply beam corrections during 
gridding

3) Apply DD ionospheric corrections



  

Parallel cleaning
● IDG makes it computationally 

possible to make 30k x 30k 
images

● Computational bottleneck has 
(again) been moved to 
deconvolution

● However, big images can 
easily be subdivided and 
cleaned independently

● Implemented in WSClean by 
using Dijkstra’s algorithm 
(with constraints)

Division of a (small) dirty images into 4 
independent areas. Bounding boxes are 
send to deconvolution algorithm, edges 
are applied with a mask.



  

Parallel cleaning
● IDG makes it computationally 

possible to make 30k x 30k 
images

● Computational bottleneck has 
(again) been moved to 
deconvolution

● However, big images can 
easily be subdivided and 
cleaned independently

● Implemented in WSClean by 
using Dijkstra’s algorithm 
(with constraints)

Division is recalculated each major 
iteration.
This shows the division during the final 
major iteration. 



  

Direction-dependent
calibration



  

Options for 
direction-dependent calibration

● Several packages can perform DDE calibration:
– MWA’s real-time system (Mitchel et al., 2008)

– SageCal (Yatawatta et al., 2009)

– Ionpeel (Offringa et al., 2016)

– Killms (Smirnov & Tasse, 2015)

– Factor (Van Weeren et al., 2016)

– SPAM (Intema, 2014)

– OBIT (Cotton, 2008)

– [..?]

– → DPPP… (Offringa et al. in prep)



  

Issues with current DDE pipelines
The large degree of freedom in DDE calibration causes several issues:

● LOFAR LBA (30-80 MHz) calibration

– S/N ratio very low
– No current pipeline can produce (good) DD solutions

● Diffuse low-frequency imaging
– Current pipelines calibrate diffuse structures out

● EoR imaging
– Need to avoid suppression of EoR signals

– Frequency stability important

● Deep HBA imaging
– Requires faster solution interval

– Interpolated TEC screens 



  

Issues with current DDE pipelines
The large degree of freedom in DDE calibration causes several issues:

● LOFAR LBA (30-80 MHz) calibration

– S/N ratio very low
– No current pipeline can produce (good) DD solutions

● Diffuse low-frequency imaging
– Current pipelines calibrate diffuse structures out

● EoR imaging
– Need to avoid suppression of EoR signals

– Frequency stability important

● Deep HBA imaging
– Requires faster solution interval

– Interpolated TEC screens 

Solution:

Introduce more constraints into 
the calibration



  

Constrained DDE calibration approach

● DPPP is the “Default Pre-processing Pipeline” – written for LOFAR 
(but works also for other arrays)

– Largely written by G. van Diepen and T. J. Dijkema

● Good starting point: DPPP already has a fast prediction 
implementation

1) A DDE algorithm was implemented in the DPPP software

– Base of algorithm is a multi-directional version of 
alternating least squares (see Smirnov & Tasse 2015)

2) Constrain solutions:

– Added generic constraint ‘hook’ into DDE algorithm 

– Implemented TEC frequency slope, spatial smoothness on 
sky and/or on ground, etc.



  

Are constraints inside calibration 
necessary?

Or is fitting the constraint after calibration also an option?

We found that in the low S/N regime, calibration does not properly 
converge without extra constraints inside the calibration:

Calibrated with TEC 
constrained

Inside the solver

Calibrated per 
channel, TEC fitted 

afterwards

Plots by R. van Weeren



  

Applying TEC constraint




  

Applying TEC constraint




  



  

TEC solving result

Plots by R. van Weeren



  

TEC solving result

Result of constraining too aggressively during solve



  

Result of TEC constraint

Plot by R. van Weeren, including work by F. de Gasperin, M. Mevius, B. van der Tol et al.



  

Result of TEC constraint




  

TEC solver
● Plot: fitting error for station 

RS509

(difference of TEC fit with final 
solver step)

● Each line shows the error for 
one direction

● Error dominated by signal to 
noise



  

Modeling with WSClean
● WSClean (since 2.4) can directly output a beam 

corrected calibration model

● Consists of point sources, Gaussians and spectral 
information

● Directly readable by DPPP (T.J. Dijkema)

– Allows DD calibration with WSClean + DPPP
● Local RMS method reduces false components

● Future goal: use IDG for prediction



  

Summary
● Low-frequency calibration & imaging very much still in 

development
● WSClean provides many new features:

– Fast gridding & deconvolution
● Ideal for LOFAR high res imaging &

MWA phase 2
– (LOFAR) beam correction
– Fast multi-scale, multi-frequency (joined channels) clean
– Fully automated (masked) cleaning

● Constrained multi-directional TEC solver in DPPP
– State of the art algorithm, generic platform for any constraint
– TEC solving is hard, but we can now do this 

WSClean: http://wsclean.sourceforge.net/
Offringa et al. 2014
Offringa & Smirnov 2017

DPPP is part of the public LOFAR 
software

http://wsclean.sourceforge.net/
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