Detectability of 21cm-signal during the Epoch of Reionization with 21cm-LAE cross-correlation. I. & II.

arXiv:1708.06291 & 1709.04168

Kenji Kubota (Kumamoto University)

Shintaro Yoshiura(Kumamoto University) Keitaro Takahashi(Kumamoto University) Kenji Hasegawa(Nagoya University) Hidenobu Yajima(Tohoku University) Masami Ouchi(University of Tokyo) Bart Pindor(University of Melbourne) Rachel L. Webster(University of Melbourne)

Problem of 21cm observation

Strategy for detection

- 1 foreground removal
- (2) foreground avoidance
- ③ <u>21cm-LAE cross-correlation</u> … this work
- In the case of auto-correlation,
- even if foregrounds are removed, it is not easy to say if the residual is actually the 21cm-signal.
- © <u>Cross-correlation is effective to identify the signal.</u>

21cm-LAE cross-correlation

- The region around LAEs is dark in 21cm.
- The region far from LAEs is bright in 21cm.
- \rightarrow Negative correlation

21cm-LAE cross-correlation

$$\langle \tilde{\delta}_{21}(\mathbf{k_1}) \tilde{\delta}_{gal}(\mathbf{k_2}) \rangle \equiv (2\pi)^3 \delta_D(\mathbf{k_1} + \mathbf{k_2} P_{21,gal}(\mathbf{k_1})),$$

Cross-power spectrum

Ohrefull How to reduce foregrounds?

^h 21cm observation $\Delta_{21}^2 \delta_{21}(k) = \delta_{21} \delta_{21}(k) + \delta_{21} \delta_{21}(k) + \delta_{21} \delta_{21}(k) + \delta_{21} \delta_{21}$

$$\langle \delta_{21} \delta_{\text{gal}} \rangle = \langle \delta_{21 \text{sig}} \delta_{\text{gal sig}} \rangle + \dots + \langle \delta_{21 \text{FG}} \delta_{\text{gal sig}} \rangle + \langle \delta_{21 \text{FG}} \delta_{\text{gal noise}} \rangle - 0 \qquad \sim 0$$

21cm-signal is correlated with LAE distribution. FG in 21cm is not correlated with LAE.

→ Foregrounds don not contribute to the average of the cross-power. (But they contribute to the variance.)

Lyman-α emitter(LAE)

- High-z galaxy with a strong emission line $@\lambda = 1216$ Å
- SILVERRUSH project reported the initial results by Hyper Suprime-Cam(HSC) on Subaru telescope.

Subaru HSC

- Wide FoV ~ $1.8 deg^2$
- Deep field @z=6.6 27 deg² , $L_{\alpha} > 4.1 \times 10^{42}$ erg/s
- redshift uncertainty $\Delta z=0.1$

<u>Lyman-α emitter(LAE)</u>

Prime Focus Spectrograph(PFS) Δz=0.0007

- \cdot spectrograph system on HSC
- \cdot determine the precise redshift of LAEs discovered by HSC.
- \rightarrow We can take the cross-correlation in 3D space.

MWA EoR fields & HSC Deep fields

ra[deg]

Reionization & LAE model

<u>N-body+radiative transfer simulation considered UV feedback</u> (K-computer@RIKEN AICS, XC30 @NAOJ CfCA

- K.Hasegawa et al. in prep)
 Reionization models well reproduce neutral fraction at z~6 indicated
- by QSO spectra and the CMB optical depth.
- \cdot The simulated Llpha luminosity functions match the observed Llpha LF.

Detectability

 MWA×Deep could be able to detect the signal at large scales. red: cross-power spectrum blue: sensitivity w/ PFS black: sensitivity w/o PFS

- PFS enhances the detectability at small scale.
- SKA is able to detect the signal even at small scales with PFS.

Strategy to enhance detectability

- The thermal noise is dominant at all scales in MWA case.
- In SKA1, the sample variance terms of 21cm-line are dominant at large scale and the thermal noise is dominant at small scale.

Extensions of Subaru HSC Deep

(1) a larger survey area

(2) a longer observation time per pointing

solid line: the S/N contour dot line: equal survey-time

A wider LAE survey is better than deeper survey with a fixed observation time.

Impact of Foreground (Yoshiura, K.K+ 2017)

FGs contribute to the statistical variance. We take into account contributions from

- extra galactic point sources
- galactic synchrotron emission

OPoint sources

- Based on GLEAM survey catalogue
- Modeled by Jack Line(U. Melbourne)

ODiffuse foreground

- parametric foreground model(Jelic et al. 2008)
- intrinsic temperature power spectrum:

$$P_{\rm FG,D} = (\eta T_{\rm FG,D})^2 \left(\frac{u}{u_0}\right)^{-2.7} \left(\frac{\nu}{\nu_0}\right)^{-2.55}$$

Requirement for detection

- Total noise is larger than the signal by two orders at least.
- The signal is barely comparable to total noise if 99% FG removal, and the extended HSC survey area by 3 factors.

<u>Summary</u>

We investigated the detectability with 21cm-LAE cross-correlation and proposed strategies to enhance the S/N.

The cross-correlation allows us to identify the 21cm-signal.

- \cdot MWA×Deep could be able to detect the signal at large scales.
- PFS is very effective to enhance the detectability at small scales and SKA×Deep is able to detect the signal at even small scale with PFS.
- MWA can improve the S/N by increasing observation time and the number of antennae.
- Another way to increase the S/N is to expand the survey area rather than to perform deeper observation.
- Foregrounds contribute to the variance and 99% FG removal is required to reduce the statistical errors.

Back up

2D power spectrum

- Foreground wedge and EoR window structure are shown.
- The leakage of foreground power into EoR window
- Diffuse FG is strong at large scales.

S/N is drastically reduced in the wedge by the FG. S/N is relatively high in the EoR window(S/N~0.1). We need to subtract FGs in order to detect the signal.

Ly α transmission rate

$$T_{\alpha,\text{IGM}} = \frac{\int \phi_{\alpha}(\nu_0) \ e^{-\tau_{\nu_0,\text{IGM}}} d\nu_0}{\int \phi_{\alpha}(\nu_0) d\nu_0} ,$$

Optical depth thorough the IGM

$$\tau_{\nu_0,\mathrm{IGM}} = \int_{r_{\mathrm{vir}}}^{l_{\mathrm{p,max}}} s_{\alpha}(\nu, T_{\mathrm{g}}) n_{\mathrm{H\,I}} dl_{\mathrm{p}},$$

 S_{α} is the Lyman α cross section of neutral hydrogen.

- The line profile is obtained by solving Ly α transfer with an expanding spherical cloud model(Yajima et al 2017).
- The line profile is controlled by the galactic window velocity and HI column density in a galaxy.

MWA×UD

SKA×UD

early model(f_HI=0.0015) late model(f_HI=0.44)

Extensions of HSC Deep(SKA)

(1) a larger survey area

(2) a longer observation time per pointing

Extensions of HSC Deep(late)

2D power spectrum

2D power spectrum

- Foreground wedge and EoR window structure are shown.
- The leakage of foreground power into EoR window
- Diffuse FG is strong at large scales.

S/N is drastically reduced in the wedge by the FG. S/N is relatively high in the EoR window(S/N~0.1). We need to subtract FGs in order to detect the signal.

S/N ratios in 2D plane(mid model)

without FG with FG Mid model with Are model without FG Mid model without FG 10^{0} 10^{0} **10**⁰ 10⁻¹ 1 10⁻¹ 10⁻¹ 1 10 k_{\parallel} [h Mpc⁻¹] 10⁻² 10⁻² k_{\parallel} [h Mpc⁻¹ SNR SNR 10⁻³ 40 10⁻³ 10⁻³ 0.1 0.1 10^{-4} 10^{-4} 10-5 10⁻⁵ 10⁻⁵ 0.1 0.1 0.1 $k_{\perp}[h Mpc^{-1}k_{\perp}[h Mpc^{-1}]]$ k_{\perp} [h Mpc⁻¹]

S/N is high at large scales without FG. S/N is drastically reduced in the wedge by the FG.

1D power spectrum(21cm auto)

