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What does the sky look like in all 
directions at “all” frequencies?
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???



How does one model 
the sky?



Global Sky Model 
(v1: de Oliveira-Costa et al. 2008, MNRAS 388, 247) 

(v2: Zheng… Kim, AL… et al. 2017, MNRAS 464, 3486)



Take a wide selection of 
survey data…



…identify common 
regions…



…which are then used to train 
three (v1) or six (v2) principal 

component spectral templates…



…that are used to iteratively fit for 
spectral and spatial information across 

the whole sky…



…and interpolation allows one to 
produce maps of the sky at 

“any” frequency



Global Sky Model v3 
(Kim, AL, Switzer 2017, in prep.)



The old versions of the GSM 
had no error bars!



Solution: construct models for the errors 
in the input data, and Monte Carlo to 

get final errors in our predictions
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LWA 74 MHz, Dowell et al. (2017)



Solution: construct models for the errors 
in the input data, and Monte Carlo to 

get final errors in our predictions
• Where available, use provided estimates of errors 

and covariances 

• Errors in the model itself modelled empirically





Run model again with an input map removed, 
making a prediction for the missing map



Subtract the new predicted map from the 
observed data

Prediction Data

—

=

“Error”



“Error”

Error model



“Error”

Ansatz for errors in 
image space:

proportional to error map

Ansatz for harmonic space:
determined by Cl of 
whitened error map

Error model



An example 408 MHz prediction



Errors on the 408 MHz prediction



Solution: construct models for the errors 
in the input data, and Monte Carlo to 

get final errors in our predictions
• Where available, use provided estimates of errors 

and covariances 

• Errors in the model itself modelled empirically 

• Interpolation errors accounted for using Gaussian 
Process regression.





Lots more coming soon to a 
Github repo near you!

• Position-dependent number of components. 
• Error bars in output maps. 
• Framework for incorporating monopole 

measurements. 
• Inclusion of new map data.
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End goal: a publicly hosted, 
self-updating, best-guess 

model of the sky



Signal extraction using 
machine learning



Reionization is a nuisance 
for CMB measurements

CMB



CMB

Reionization is a nuisance 
for CMB measurements

Extra optical depth parameter:





Scattering Reduces amplitude of 
density fluctuations



• Early reionization (higher optical depth)  
+ Large primordial fluctuations As  

vs 
• Late reionization (lower optical depth)  

+ Small primordial fluctuations As

CMB



Understanding reionization (especially the 
CMB optical depth) can improve constraints 

on other cosmological parameters

• Early reionization (higher optical depth)  
+ Large primordial fluctuations As 

vs 
• Late reionization (lower optical depth)  

+ Small primordial fluctuations As



Observations Model parameters 
via power spectrum

Theory prediction

⌧



21cm information breaks the degeneracy 
between the amplitude of fluctuations and 

the optical depth
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Isn’t this awfully indirect 
and model-dependent?



Observations Model parameters 
via power spectrum

Theory prediction

⌧



Observations

⌧

Convolutional 
Neural Network



Convolutional neural nets process data 
through a series of convolutions, 

thresholdings, and averages

⌧



Convolutional neural nets process data 
through a series of convolutions, 

thresholdings, and averages

⌧

Repeated exposure to training data allows 
the optimization of the convolution kernels 

for extracting parameters of interest



Initial results suggest that CNNs 
can extract the optical depth

recovered to a 
few percent!
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Descriptions of reionization hinge crucially 
on the correlation between the density 

field and the ionization field

21cm field 
Mesinger et al. (2010)



Descriptions of reionization hinge crucially 
on the correlation between the density 

field and the ionization field

21cm field 
Mesinger et al. (2010)

Extremely preliminary: CNN 
can recover matter power 

spectrum recovered to ~10%



Take home messages
• Latest version of the data-driven GSM 

outputs errors in addition to best-
guess sky models. 

• Convolutional Neural Networks allow 
simulated training sets to teach us 
how to leverage non-Gaussianity for 
parameter constraints.


