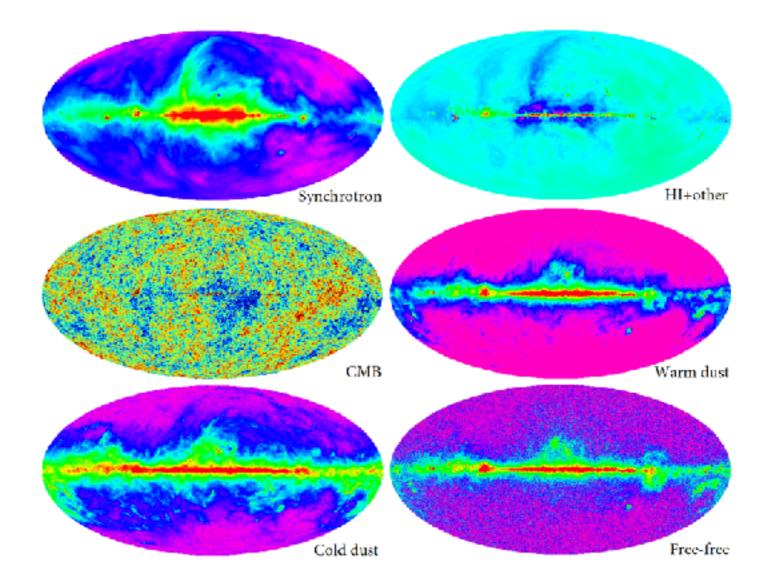
Data, Simulations, and Machine Learning for Foreground Modelling and Signal Extraction

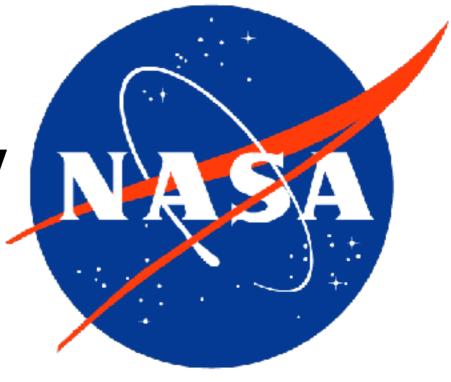


Adrian Liu, UC Berkeley/McGill

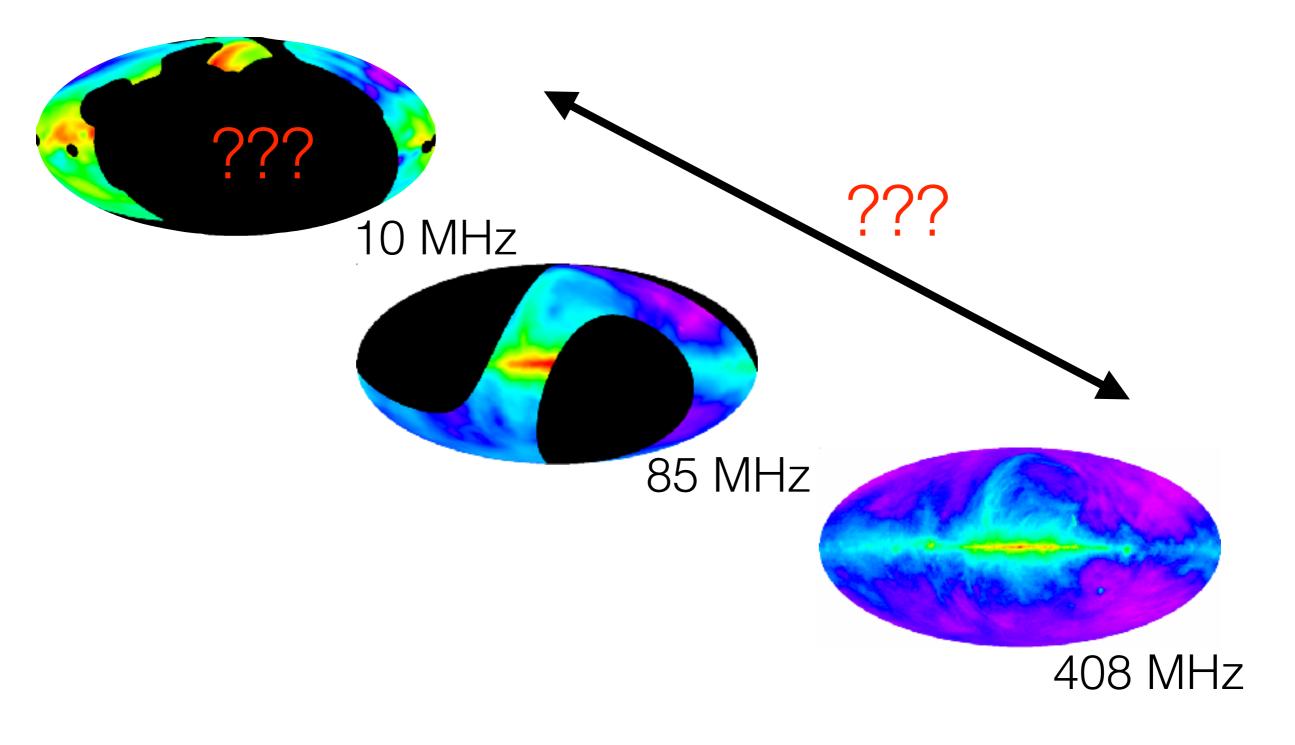
Foreground modelling

The extended Global Sky Model (eGSM) project

AL, UC Berkeley/McGill **Doyeon "Avery" Kim, UC Berkeley** Eric Switzer, NASA Goddard Haoxuan "Jeff" Zheng, MIT/Intel



What does the sky look like in all directions at "all" frequencies?

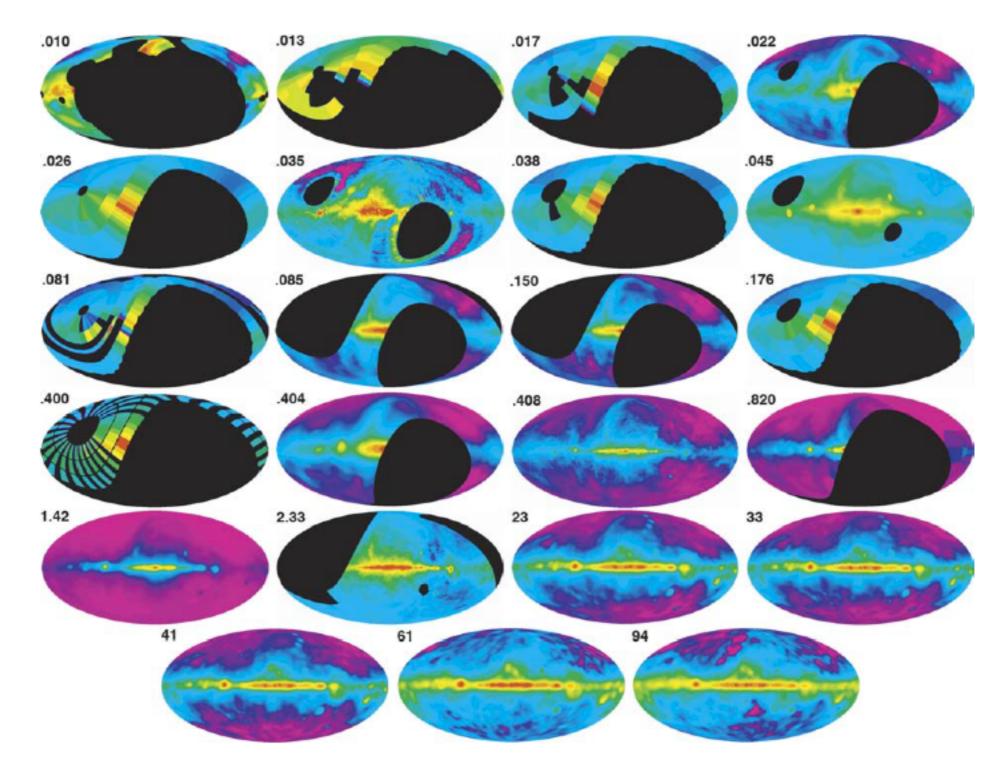


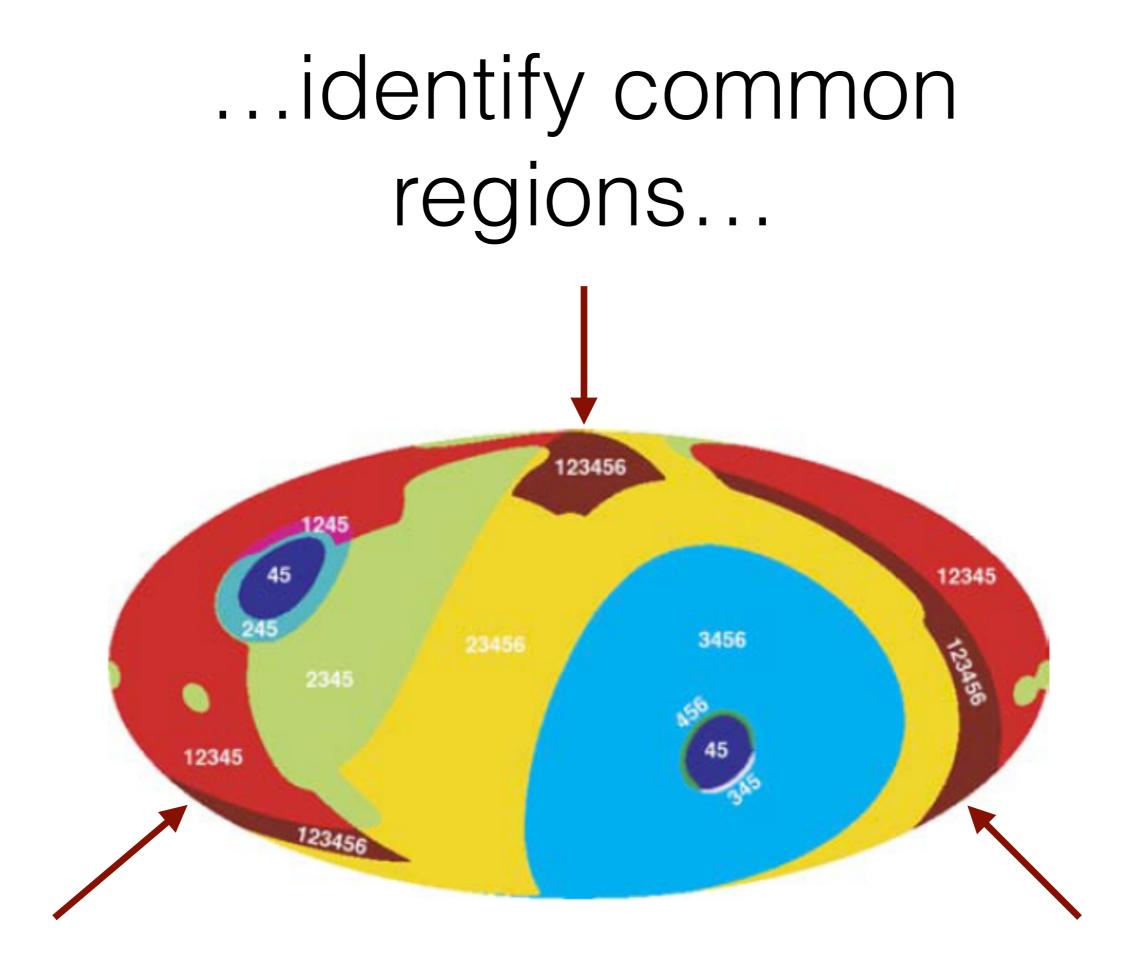
How does one model the sky?

Global Sky Model

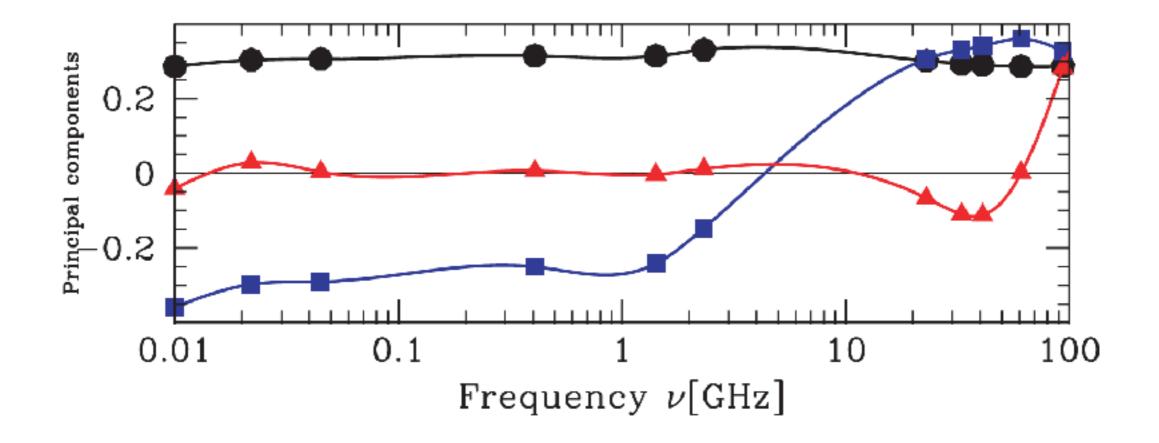
(v1: de Oliveira-Costa et al. 2008, MNRAS 388, 247) (v2: Zheng... Kim, **AL**... et al. 2017, MNRAS 464, 3486)

Take a wide selection of survey data...

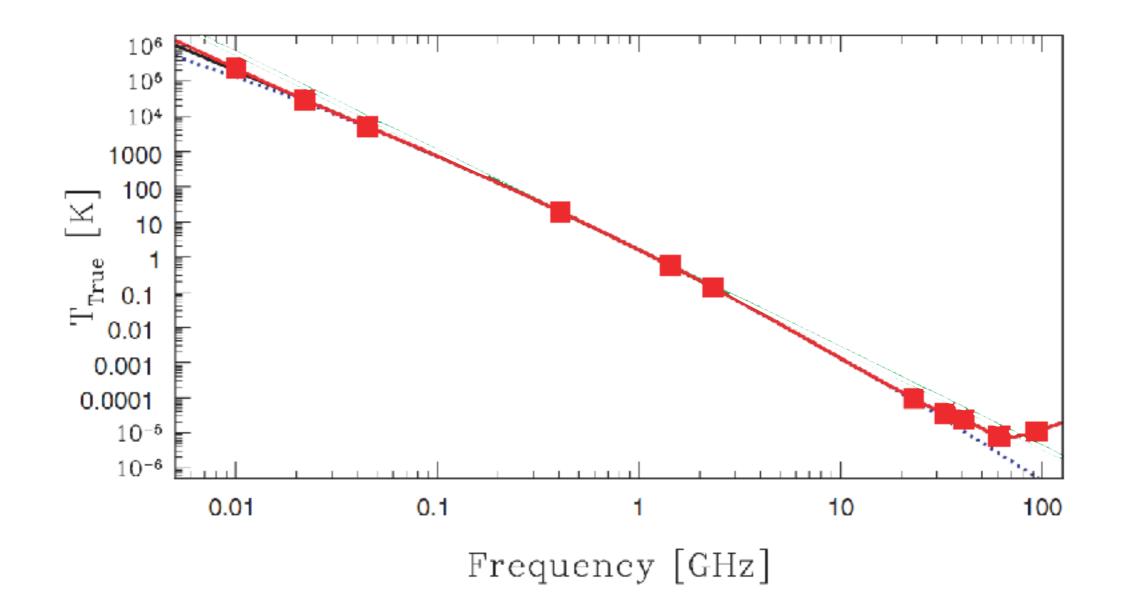




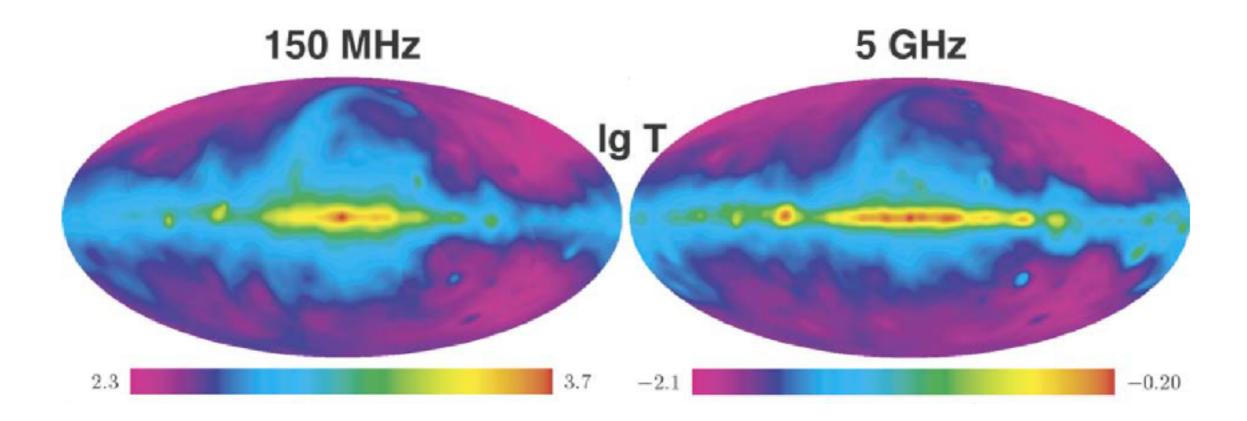
...which are then used to train three (v1) or six (v2) principal component spectral templates...



...that are used to iteratively fit for spectral and spatial information across the whole sky...



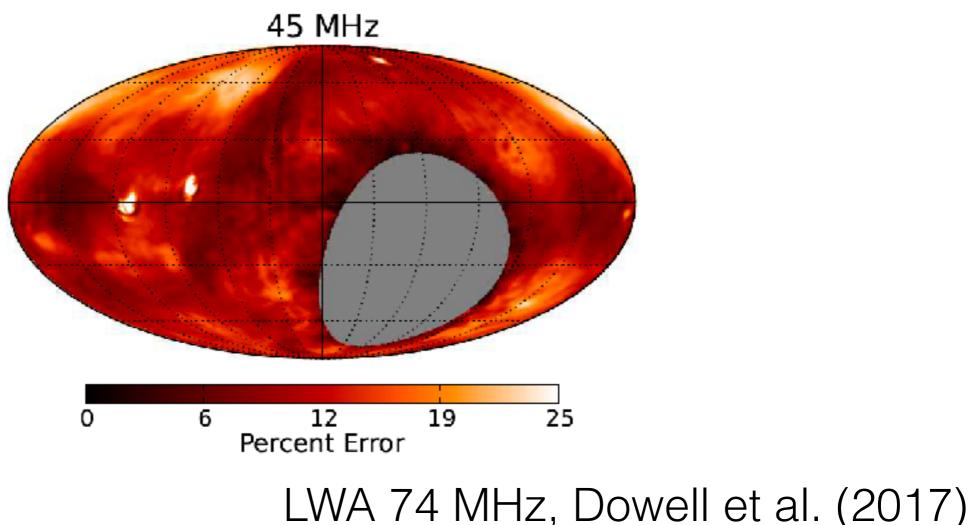
...and interpolation allows one to produce maps of the sky at "any" frequency



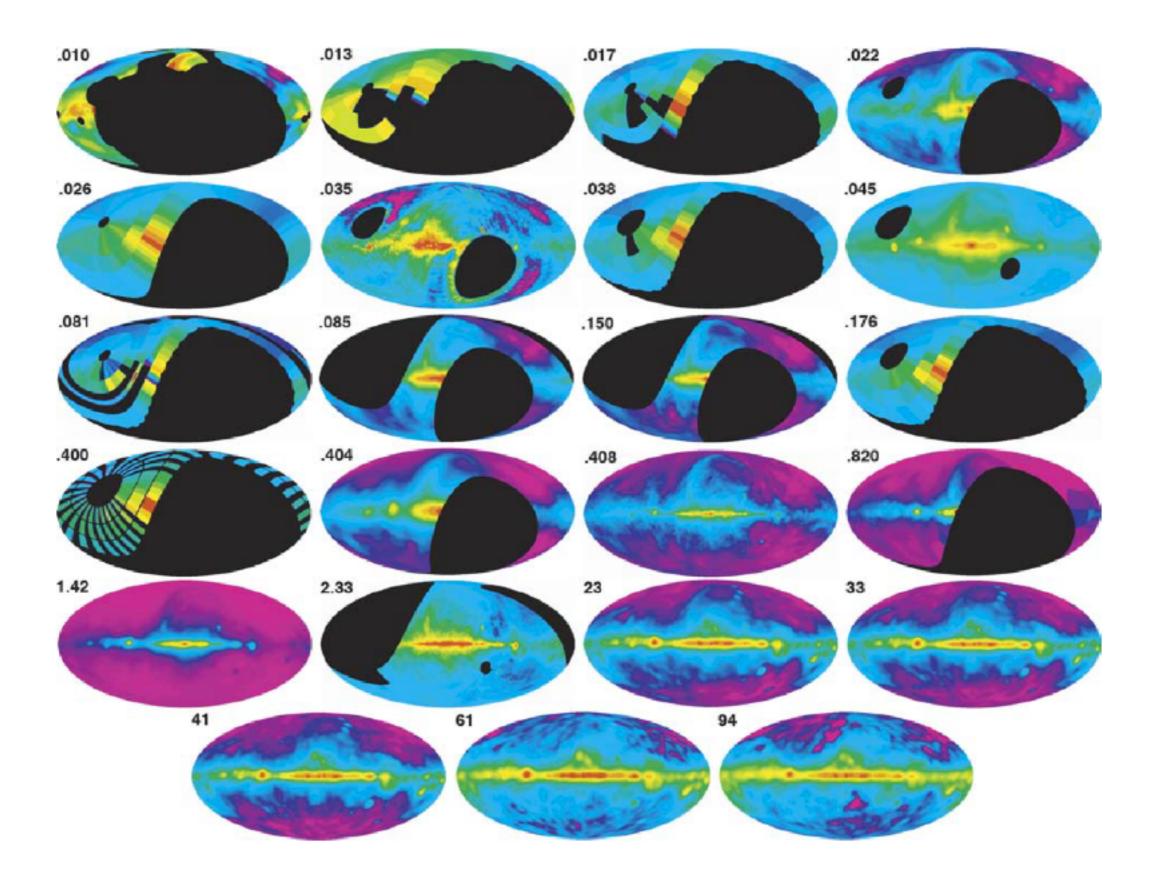
Global Sky Model v3 (Kim, AL, Switzer 2017, in prep.)

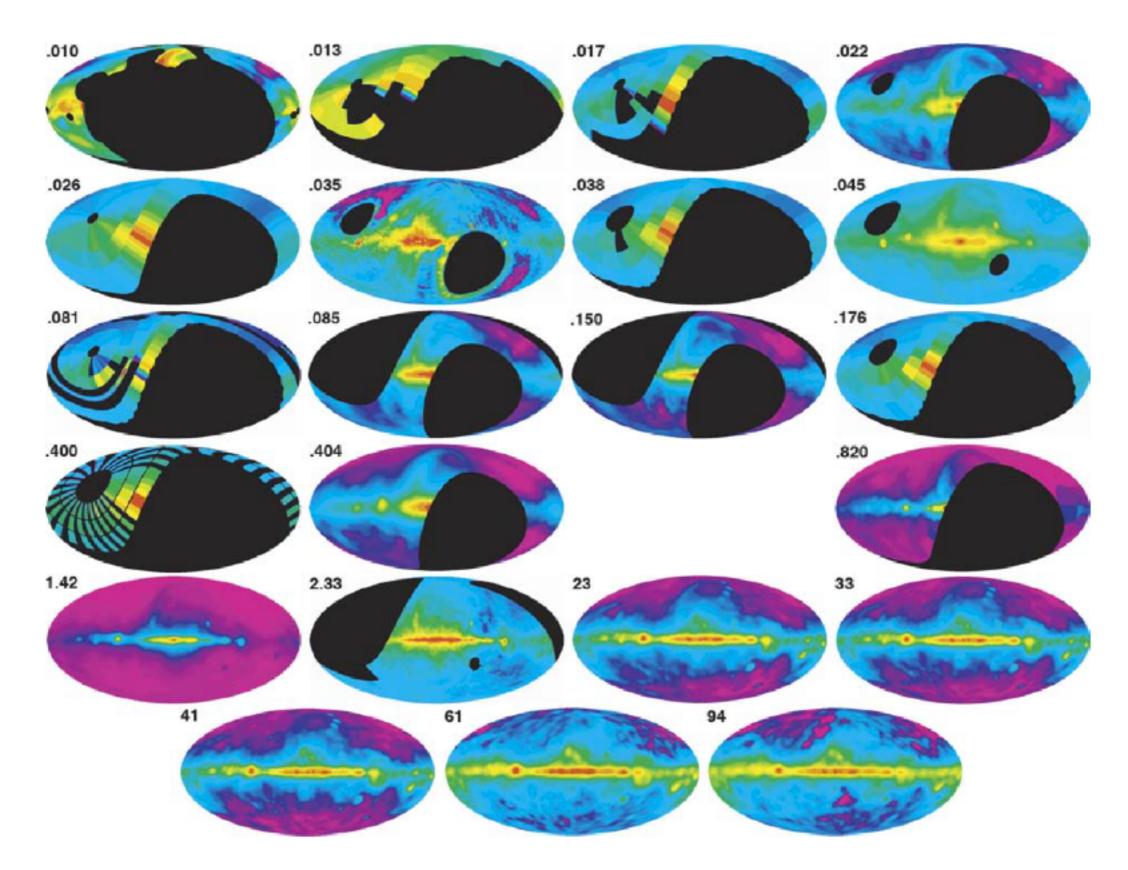
The old versions of the GSM had no error bars!

 Where available, use provided estimates of errors and covariances



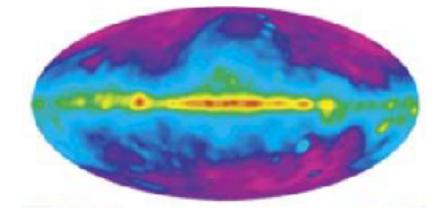
- Where available, use provided estimates of errors and covariances
- Errors in the model itself modelled empirically

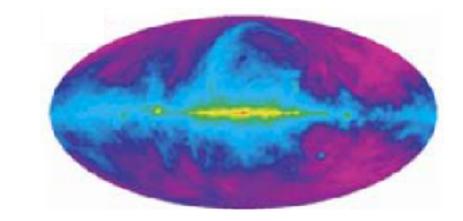




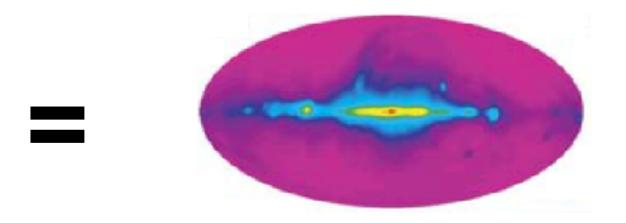
Run model again with an input map removed, making a prediction for the missing map

Prediction

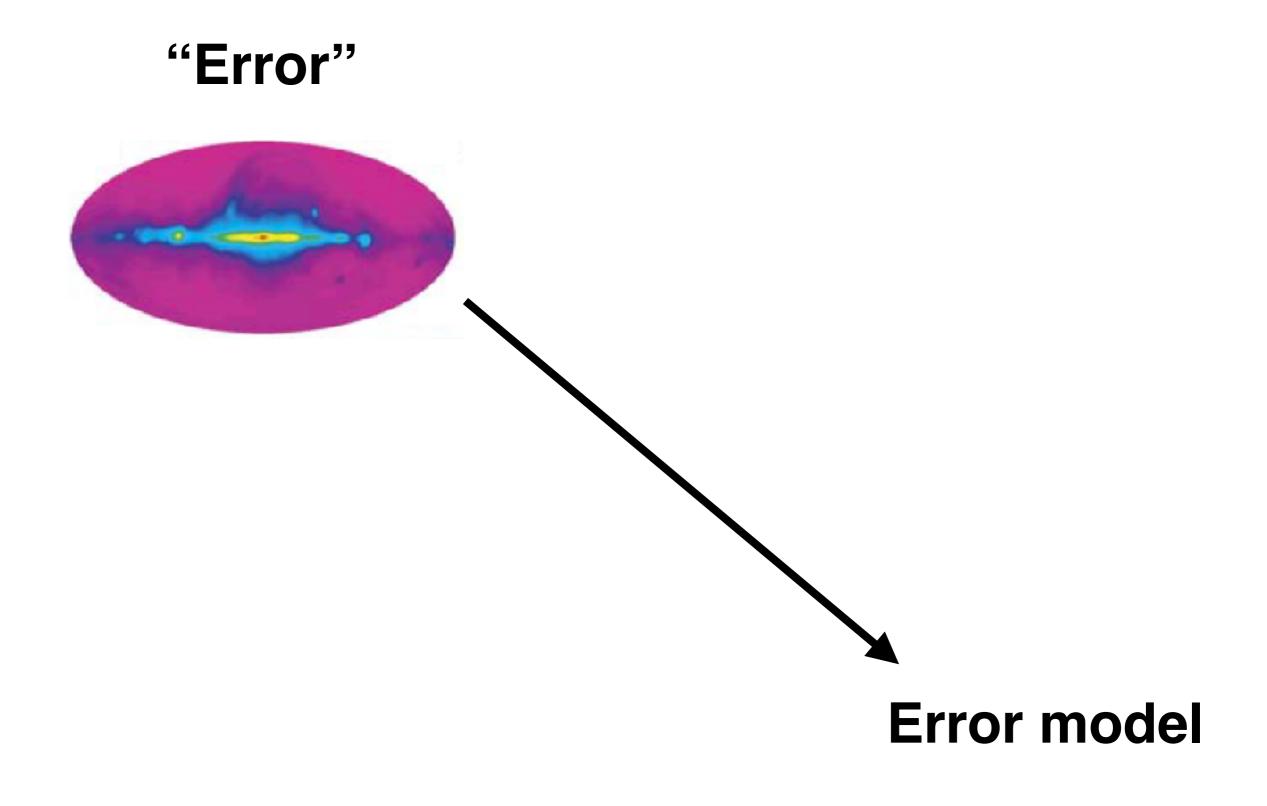


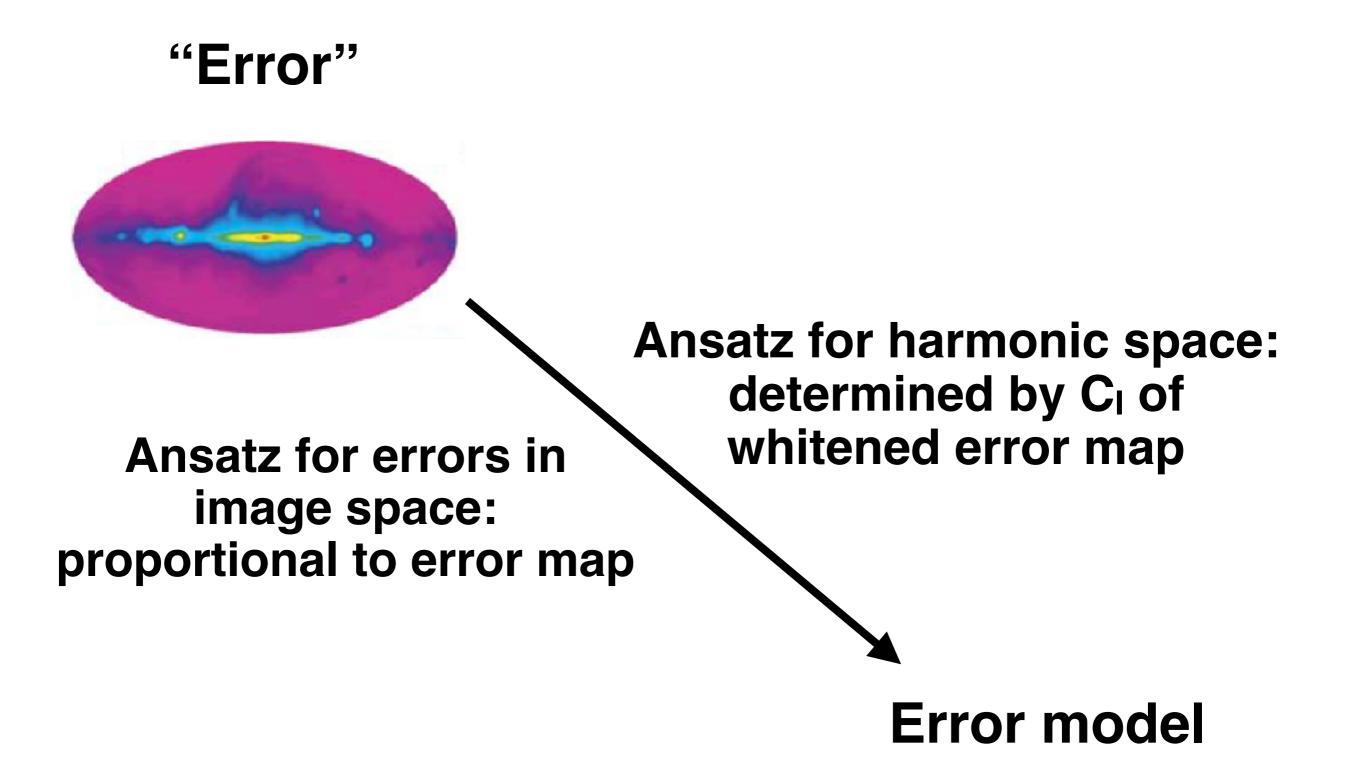


"Error"

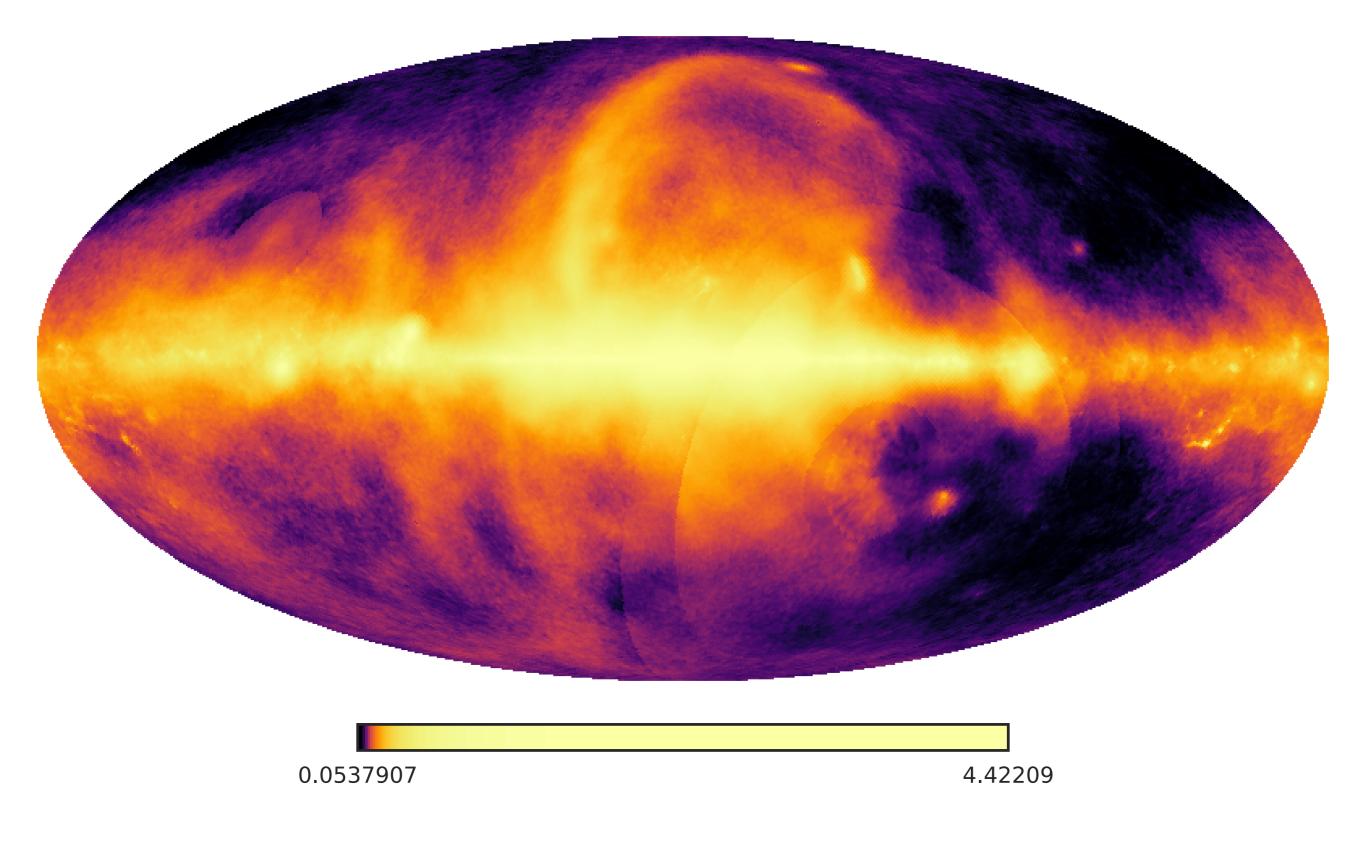


Subtract the new predicted map from the observed data

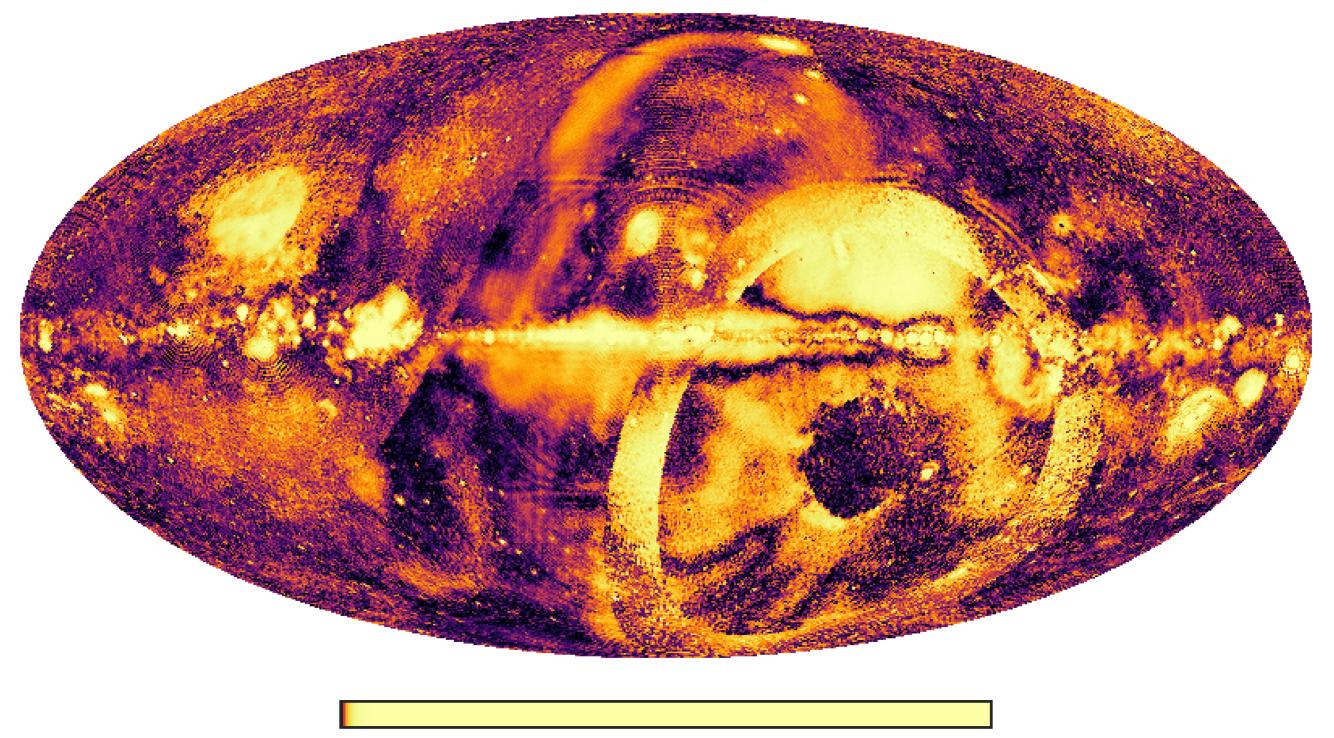




An example 408 MHz prediction

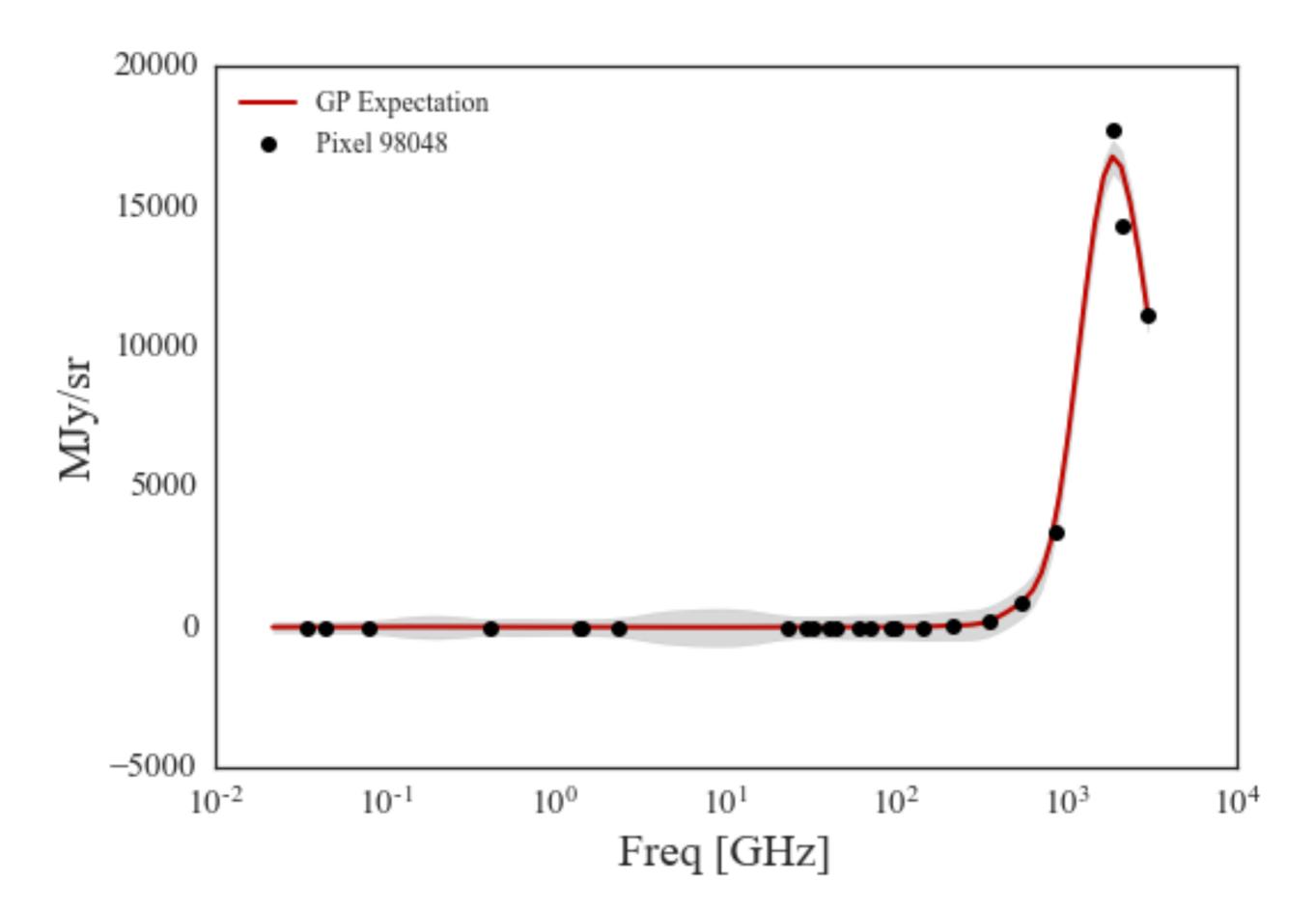


Errors on the 408 MHz prediction



0.000293996

- Where available, use provided estimates of errors and covariances
- Errors in the model itself modelled empirically
- Interpolation errors accounted for using Gaussian Process regression.



Lots more coming soon to a Github repo near you!

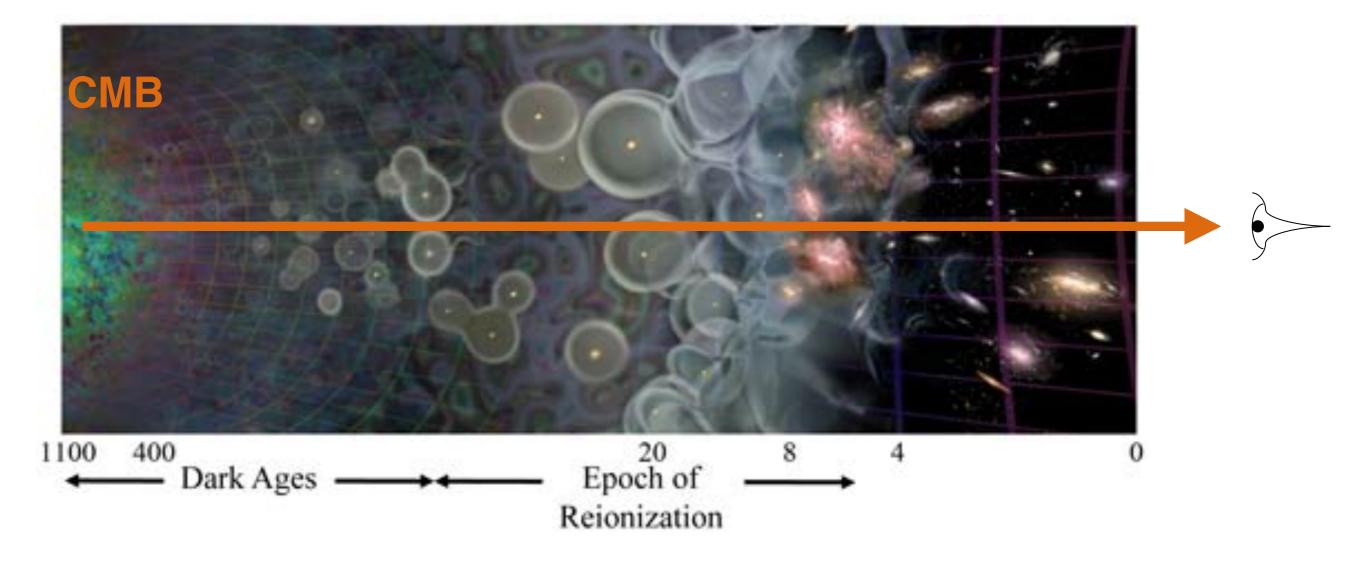
- Position-dependent number of components.
- Error bars in output maps.
- Framework for incorporating monopole measurements.
- Inclusion of new map data.

Lots more coming soon to a Github repo near you!

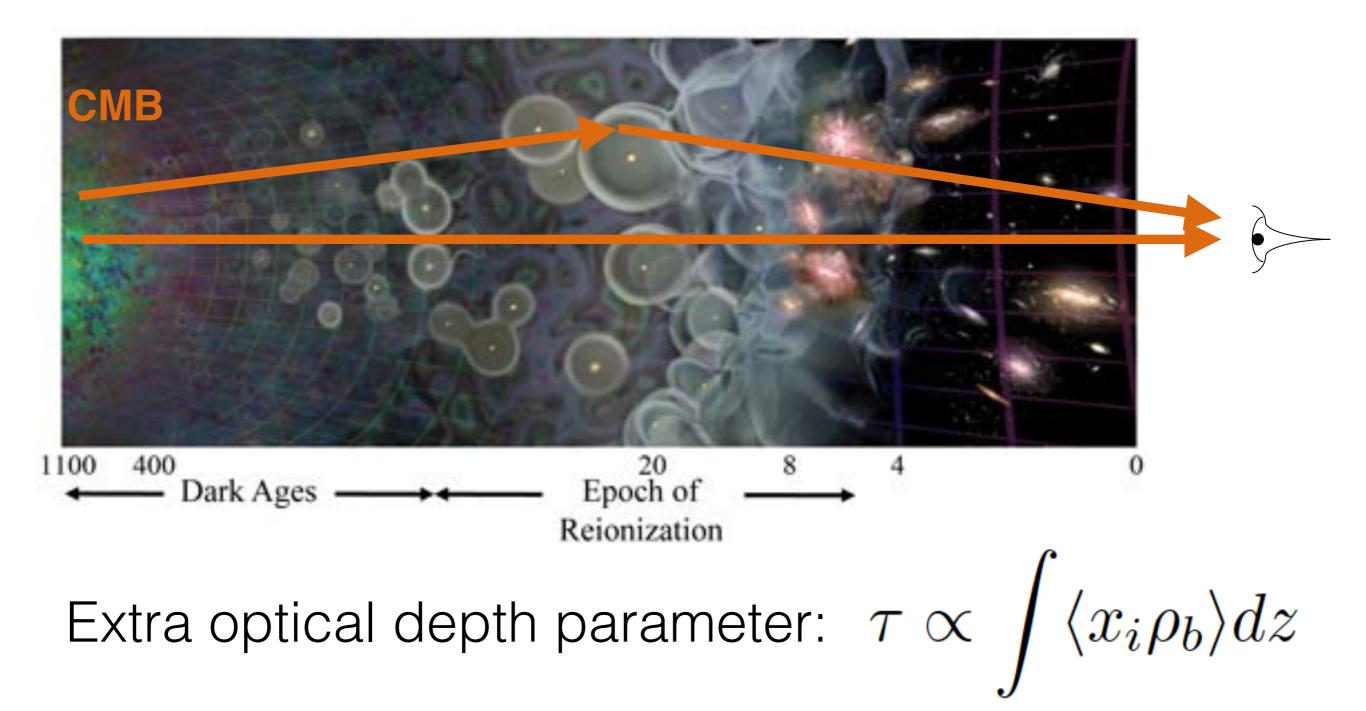
Position-dependent number of components.
End goal: a publicly hosted,
self-updating, best-guess model of the sky

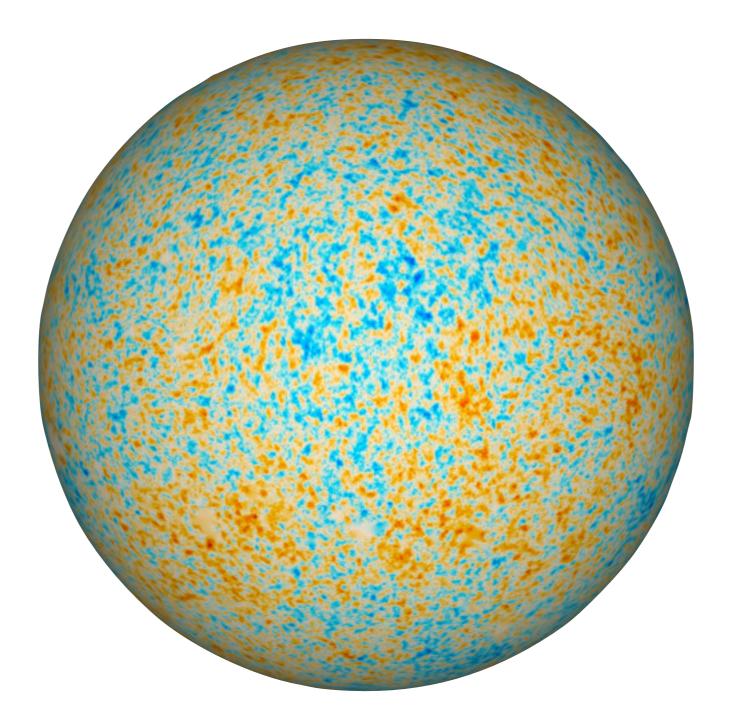
Signal extraction using machine learning

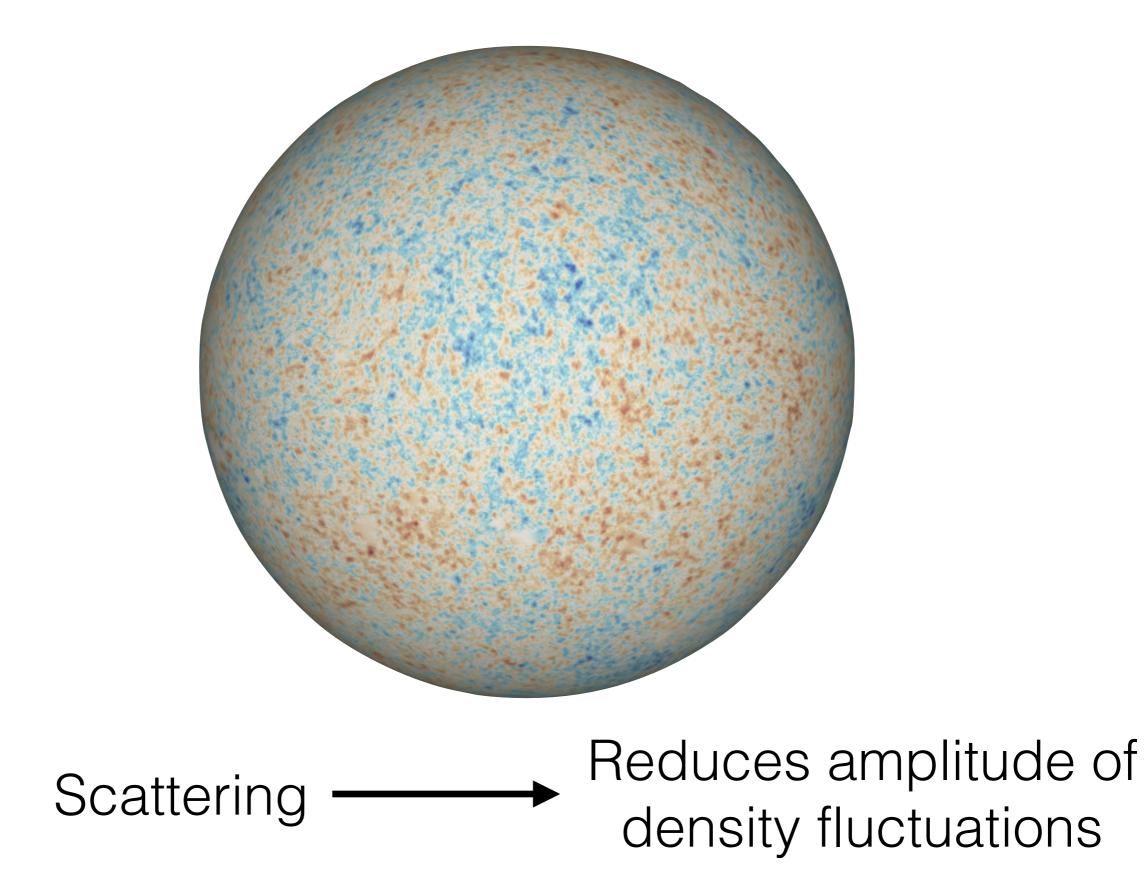
Reionization is a nuisance for CMB measurements



Reionization is a nuisance for CMB measurements



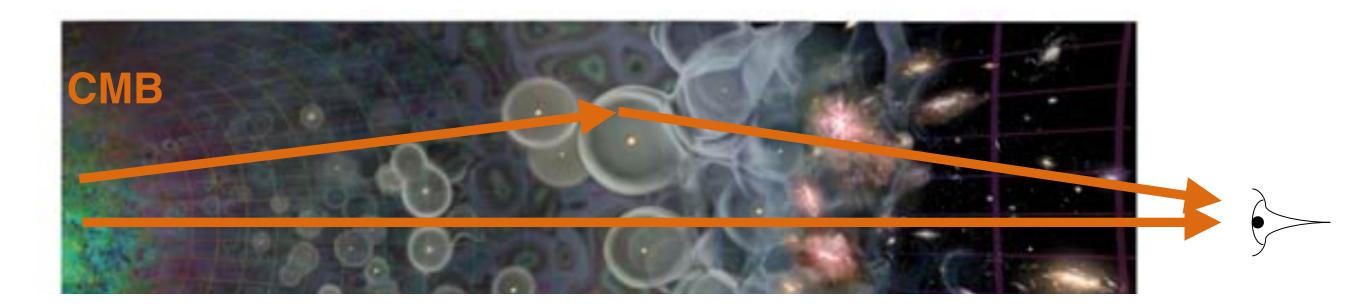




Early reionization (higher optical depth)
 + Large primordial fluctuations A_s

VS

Late reionization (lower optical depth)
 + Small primordial fluctuations A_s



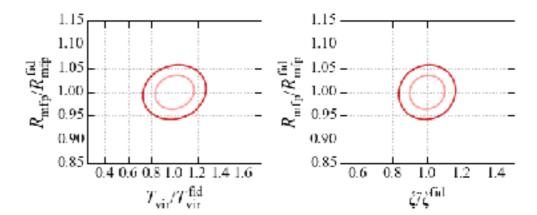
Early reionization (higher optical depth)
 + Large primordial fluctuations A_s

VS

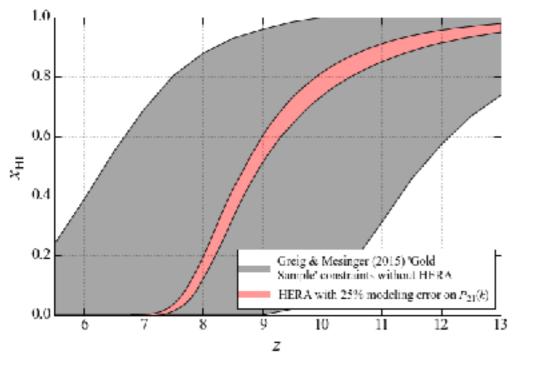
Late reionization (lower optical depth)
 + Small primordial fluctuations A_s

Understanding reionization (especially the CMB optical depth) can improve constraints on other cosmological parameters

Observations

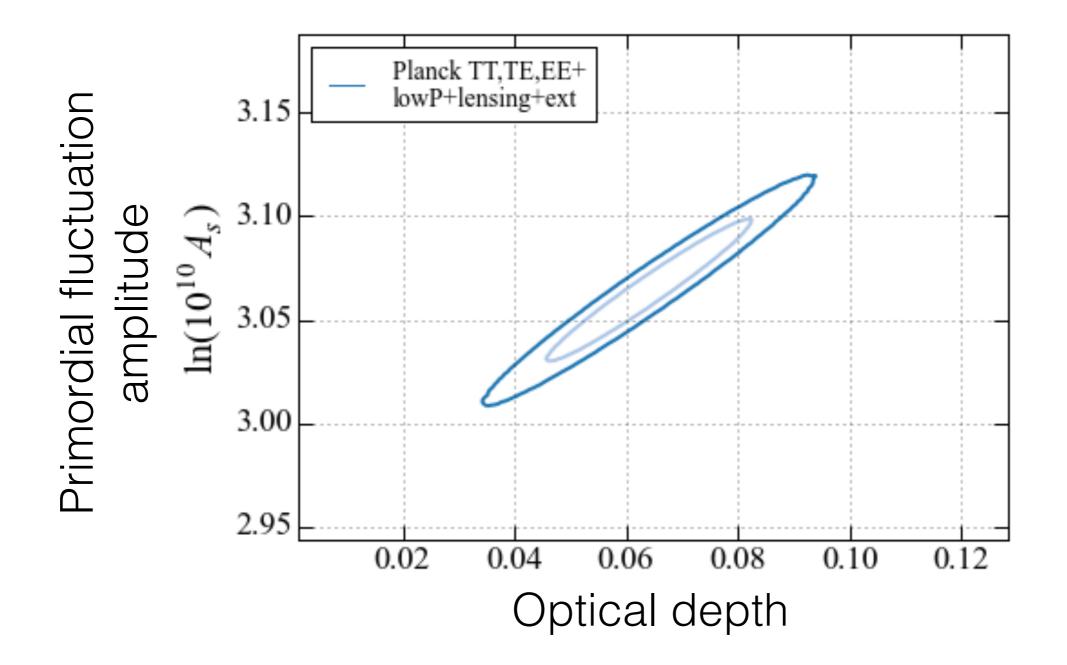


Model parameters via power spectrum

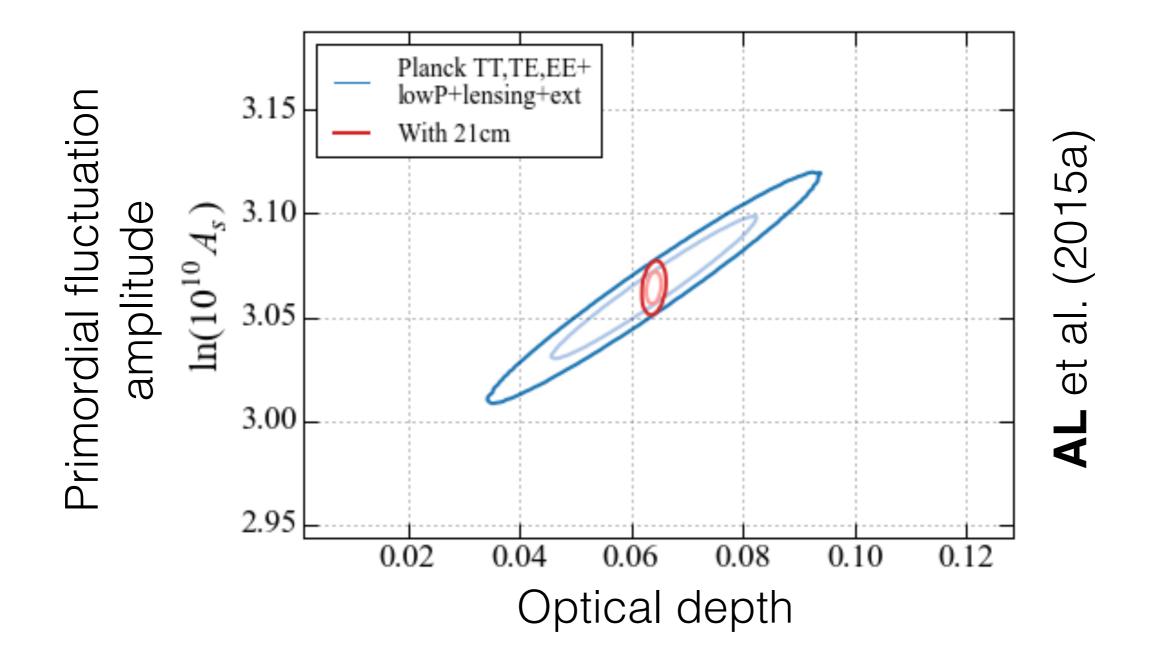


Theory prediction

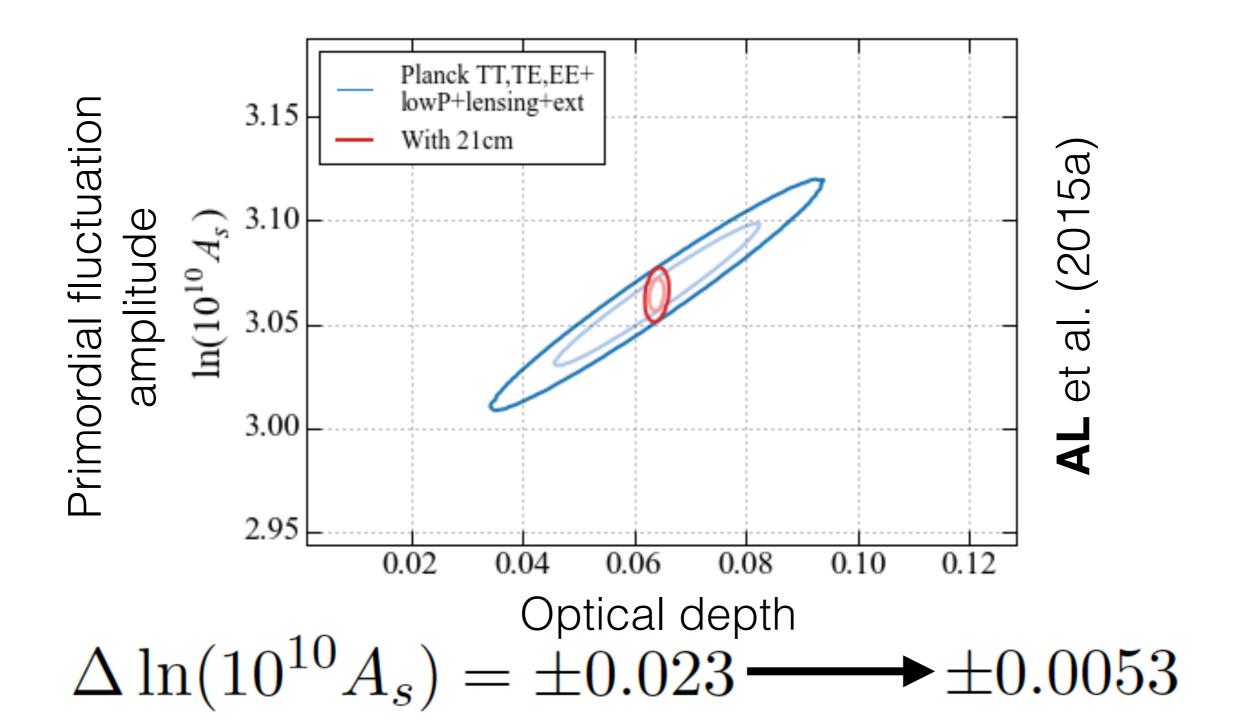
21cm information breaks the degeneracy between the amplitude of fluctuations and the optical depth



21cm information breaks the degeneracy between the amplitude of fluctuations and the optical depth

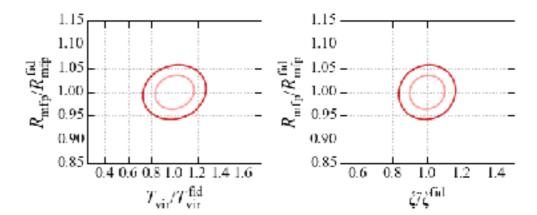


21cm information breaks the degeneracy between the amplitude of fluctuations and the optical depth

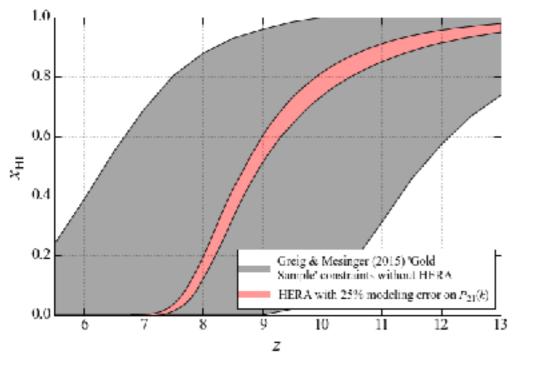


Isn't this awfully indirect and model-dependent?

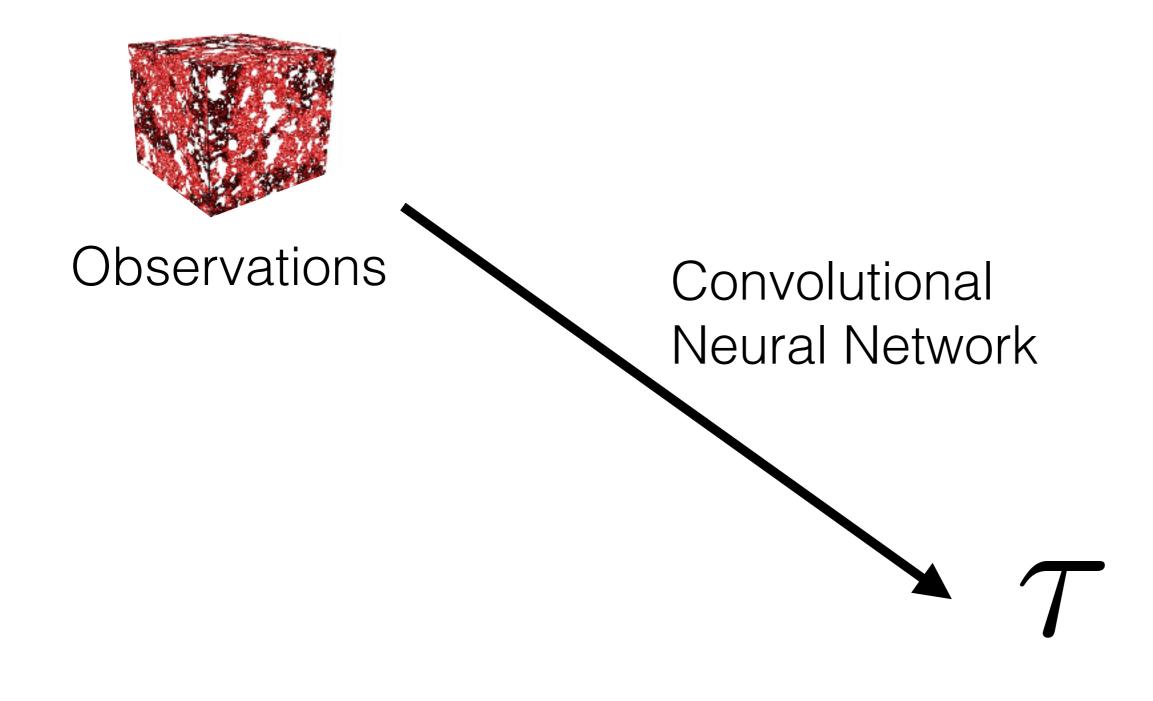
Observations



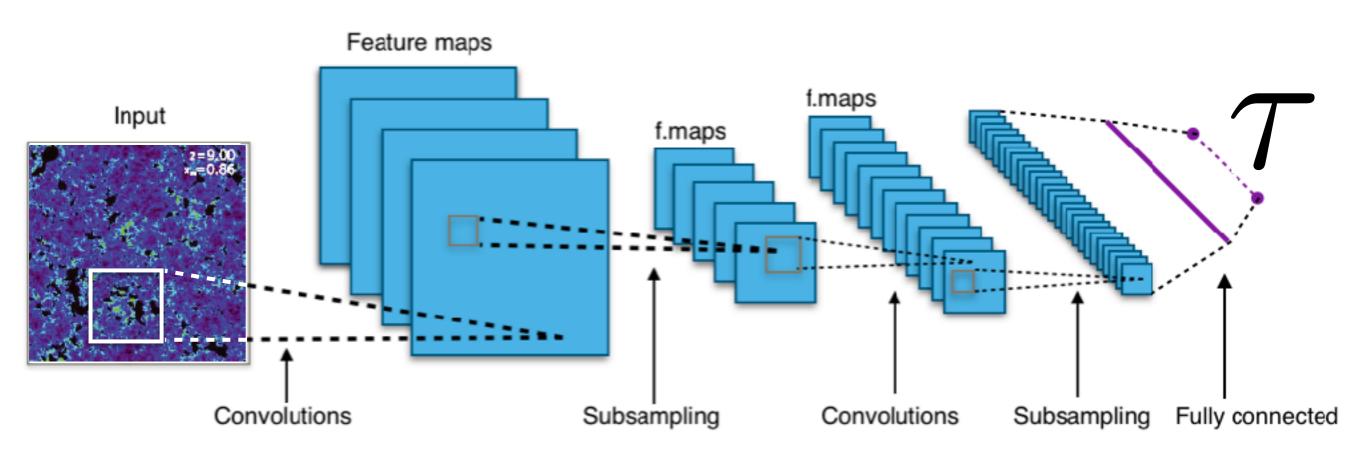
Model parameters via power spectrum



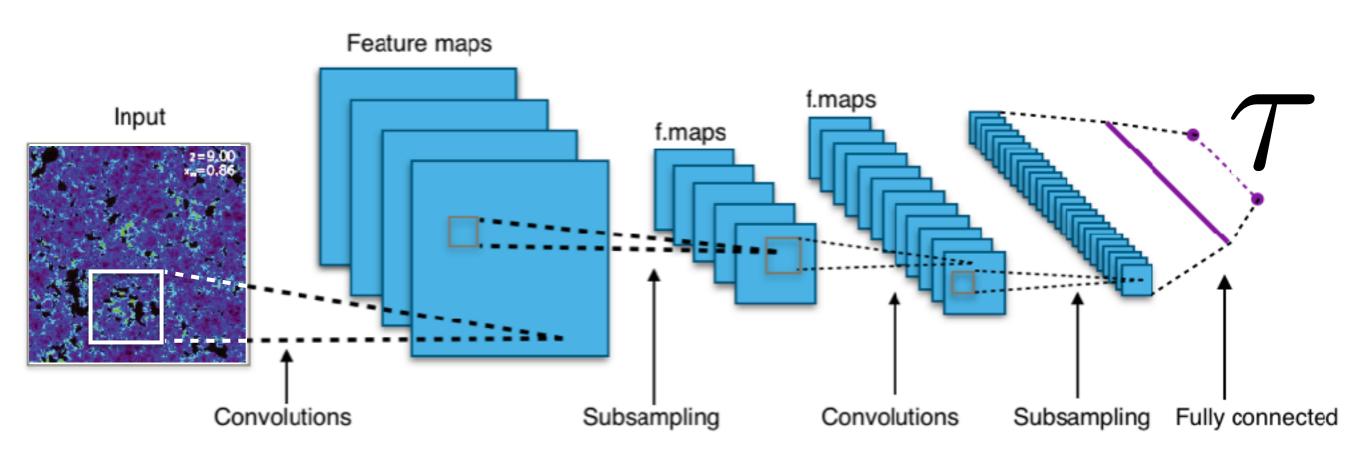
Theory prediction



Convolutional neural nets process data through a series of convolutions, thresholdings, and averages

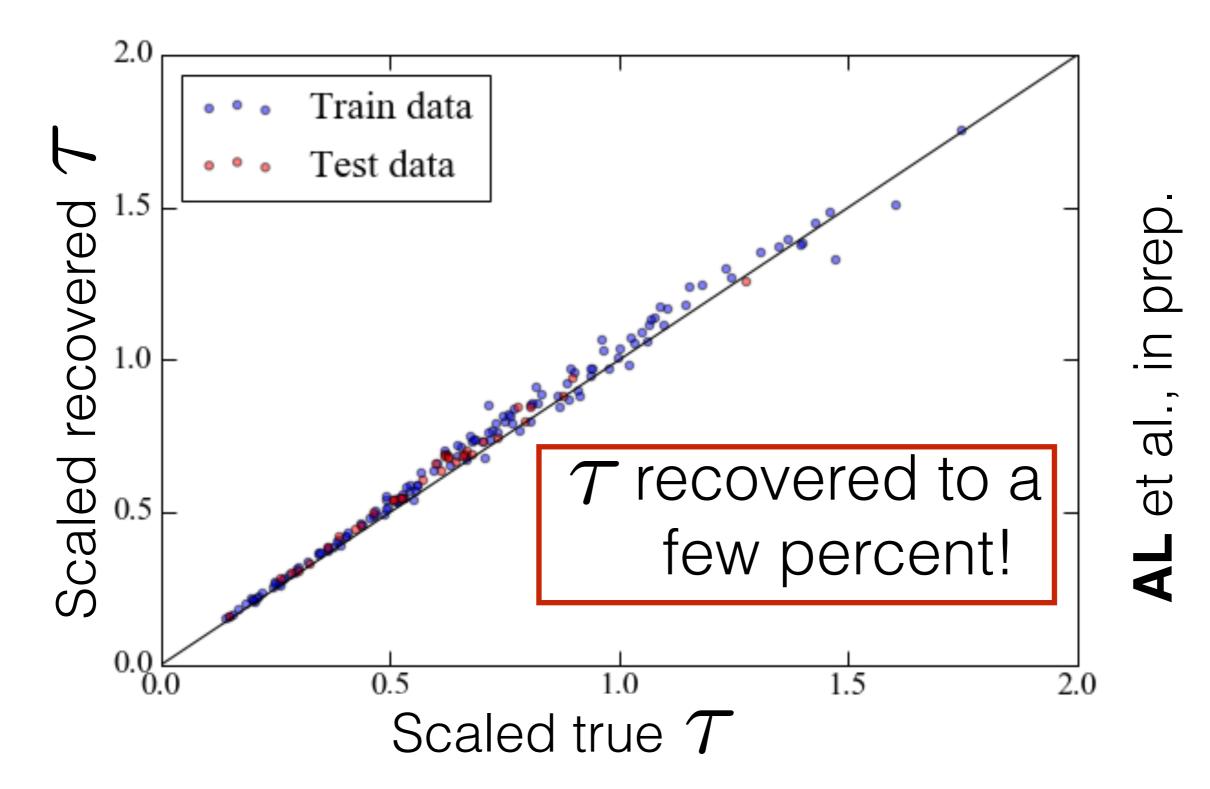


Convolutional neural nets process data through a series of convolutions, thresholdings, and averages

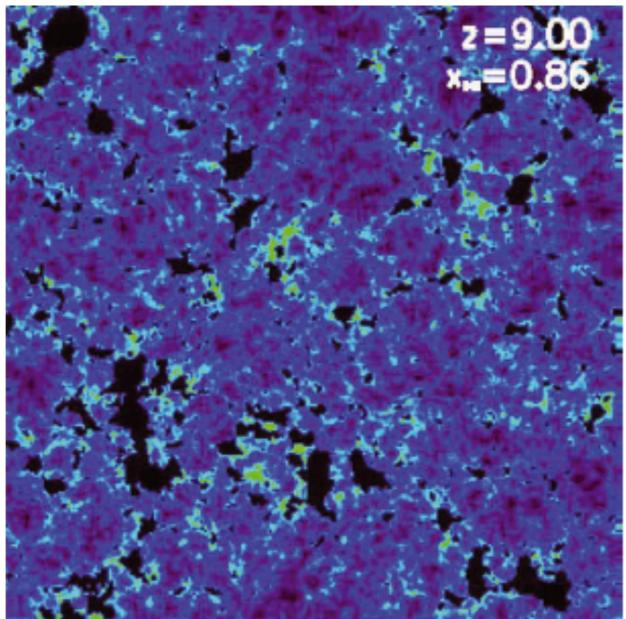


Repeated exposure to training data allows the optimization of the convolution kernels for extracting parameters of interest

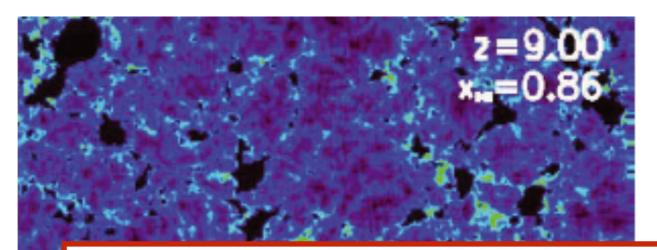
Initial results suggest that CNNs can extract the optical depth



Descriptions of reionization hinge crucially on the correlation between the density field and the ionization field



21cm field Mesinger et al. (2010) Descriptions of reionization hinge crucially on the correlation between the density field and the ionization field



Extremely preliminary: CNN can recover matter power spectrum recovered to ~10%

21cm field Mesinger et al. (2010)

Take home messages

- Latest version of the data-driven GSM outputs errors in addition to bestguess sky models.
- Convolutional Neural Networks allow simulated training sets to teach us how to leverage non-Gaussianity for parameter constraints.