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What does the sky look like In all
directions at “all” frequencies”

408 MHz



How does one model
the sky”



Global Sky Model

(v1: de Oliveira-Costa et al. 2008, MNRAS 388, 247)
(v2: Zheng... Kim, AL... et al. 2017, MNRAS 464, 3486)



Take a wide selection of




..Identify common
regions...




...which are then used to train
three (v1) or six (v2) principal
component spectral templates...
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...that are used to iteratively fit tor
spectral and spatial information across
the whole sky...
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..and interpolation allows one to
oroduce maps of the sky at
‘any’ frequency

150 MHz 5 GHz
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Global Sky Model v3

(Kim, AL, Switzer 2017, in prep.)



The old versions of the GSM
had no error bars!



Solution: construct models for the errors
in the input data, and Monte Carlo to
get final errors in our predictions



Solution: construct models for the errors
in the input data, and Monte Carlo to
get final errors in our predictions

 \Where available, use provided estimates of errors

and covariances
45 MHz
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LWA 74 MHz, Dowell et al. (2017)



Solution: construct models for the errors
in the input data, and Monte Carlo to
get final errors in our predictions

Where available, use provided estimates of errors
and covariances

* Errors in the model itself modelled empirically






Run model again with an input map removed,
making a prediction for the missing map



Prediction Data

Subtract the new predicted map from the
observed data



“Error”

Error model



“Error”

Ansatz for harmonic space:
determined by C, of

Ansatz for errors in whitened error map

image space:
proportional to error map

Error model



An example 408 MHz prediction

0.0537907 4.42209




Errors on the 408 MiHz prediction

0.000293996 1.90445



Solution: construct models for the errors
in the input data, and Monte Carlo to
get final errors in our predictions

 \Where available, use provided estimates of errors
and covariances

* Errors in the model itself modelled empirically

* Interpolation errors accounted for using Gaussian
Process regression.
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L ots more coming soon to a
Github repo near you!

Position-dependent number of components.
Error bars in output maps.

Framework for incorporating monopole
measurements.

Inclusion of new map data.



| ots more coming soon to a
Github repo near you!

. End goal: a publicly hosted,
| self-updating, best-guess
model of the sky




Signal extraction using
machnine learning



Relonization IS a nuisance
for CMB measurements
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Relonization IS a nuisance
for CMB measurements
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Relonization

“xtra optical depth parameter: 7 /(azipwdz






Reduces amplitude of

N ———»
Scattering density fluctuations



* Early reionization (higher optical depth)
+ Large primordial fluctuations As

VS

* [ ate reionization (lower optical depth)
+ Small primordial fluctuations As




* Early reionization (higher optical depth)
+ Large primordial fluctuations As

VS

* [ ate reionization (lower optical depth)
+ Small primordial fluctuations As

Understanding reionization (especially the
CMB optical depth) can improve constraints
on other cosmological parameters
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21cm information breaks the degeneracy
between the amplitude of fluctuations and
the optical depth
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21cm information breaks the degeneracy
Uctuations and
the optical depth

between the amplitude of fl

| | | ] l I
~ Planck TT,TE.EE+
C 3.15H lowP+lensing+ext i
9 —  With2lem
-+
qV)
2 o ~ 310k )
= 2 2
A — O
— S 205l -
© O = 3.0:
5 & =
— @©
= 3.001 _
IS
S
al
295 1 1 1 1 , .
0.02 0.04 0.06 0.08 0.10 0.12

Optical depth

AL et al. (2015a)



21cm information breaks the degeneracy
between the amplitude of fluctuations and
the optical depth
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Isn’t this awfully indirect
and model-dependent”?
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Convolutional

Observations

Neural Network




Convolutional neural nets process data
through a series of convolutions,
thresholdings, and averages

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected



Convolutional neural nets process data
through a series of convolutions,
thresholdings, and averages

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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Initial results suggest that CNNs
can extract the optical depth
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Descriptions of reionization hinge crucially
on the correlation between the density
field and the ionization field
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Descriptions of reionization hinge crucially
on the correlation between the density
field and the ionization field
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lake home messages

e | atest version o

" the data-driver

outputs errors Ir

guess sky models.

addition to best

GSM

* Convolutional Neural Networks allow
simulated training sets to teach us
how to leverage non-Gaussianity for
parameter constraints.




