

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

Forecasts for z=3.35 intensity mapping with the Ooty Wide Field Array

Viswesh Marthi

CITA/Dunlap Institute, Toronto & NCRA-TIFR, Pune

14-Dec-2017, SALF-IV, Sydney

The OWFA group

C R Subrahmanya Jayaram Chengalur P K Manoharan Somnath Bharadwaj Jasjeet Bagla Saiyad Ali Viswesh Marthi Suman Chatterjee Anjan Sarkar Debanjan Sarkar Apurba Bera Siddhartha B.

Peeyush Prasad Ramu Yadav Amit Mittal and Industry partners, ORT engineers

HI in the Large Scale structure

State-of-the-art

Upcoming 21-cm IM experiments

HIRAX

CHIME

Tianlai CRT

- Upgrade to the Ooty Radio Telescope (ORT)
- 530m X 30m,
 1056 dipoles
- Operates at 327 MHz, mostly IPS and pulsars
- Located on a hill, 11° slope
- Equatorial mount
- EW mechanical, NS electronic

- Phase-II : FoV = 28° X
 2° 264 antennas
- Phase-I : FoV = 4.5° X
 2° 40 antennas
- Bandwidth = $\sim 35 \text{ MHz}$
- z = 3.35 for **HI**
- $T_{sys} = 150 \text{ K}$

Subrahmanya, Manoharan & Chengalur, 2017 Prasad & Subrahmanya, 2010

Structure in transition from linear to non-linear

Chatterjee, Bharadwaj & Marthi 2017, JApA special issue

HI power spectrum forecasts

 $C_{\ell} = C_{\ell}^{\mathrm{P}} + C_{\ell}^{\mathrm{cl}}$

Marthi, Chatterjee, Chengalur & Bharadwaj, 2017, MNRAS.

Redundancy and redundancy calibration

Marthi & Chengalur, 2014, MNRAS.

Visibility covariance power spectrum estimator

$$\mathbf{S}_{2}(\mathbf{U}_{n}, \mathbf{U}_{m}, \nu_{i}, \nu_{j}) \equiv \langle \mathcal{V}(\mathbf{U}_{n}, \nu_{i}) \mathcal{V}^{*}(\mathbf{U}_{m}, \nu_{j}) \rangle \qquad \text{Datta \& Choudhury 2007}$$
$$\mathbf{S}_{2}(\mathbf{U}_{n}, \Delta \nu) = \left(\frac{\partial B}{\partial T}\right)^{2} C_{\ell}(\Delta \nu) \left[\int d^{2}\mathbf{U}' |\tilde{A}(\mathbf{U}_{n} - \mathbf{U}')|^{2}\right]$$

$$\begin{split} \mathcal{V}(\mathbf{U}_n,\nu) &= \sum_{i=0}^{N_n} \mathcal{V}^{(i)}(\mathbf{U}_n,\nu) \quad \left| \begin{array}{c} \mathcal{V}'(\mathbf{U}_n,\nu) = \sum_{i=0}^{N_n} |\mathcal{V}^{(i)}(\mathbf{U}_n,\nu)|^2 \\ \hline \mathbf{S}_2(\mathbf{U}_n,\nu_i,\nu_j) &= \frac{\mathcal{V}(\mathbf{U}_n,\nu_i)\mathcal{V}^*(\mathbf{U}_n,\nu_j) - \delta_{ij}\mathcal{V}'(\mathbf{U}_n,\nu_i)}{N_n^2 - \delta_{ij}N_n} \end{split} \end{split}$$

Marthi, Chatterjee, Chengalur & Bharadwaj 2017.

Phase-I			
Antennas	: 40	Unique baselines	: 39
Baselines	: 780	Channels	: 312

Dhaaal

One Hermitian product per baseline, each 312 X 312.

Visibility covariance power spectrum estimator

Multifrequency Angular Power Spectrum

Marthi, Chatterjee, Chengalur & Bharadwaj, 2017

$$\mathbf{S}_{2}(\mathbf{U}_{n},\Delta\nu) = \left(\frac{\partial B}{\partial T}\right)^{2} C_{\ell}(\Delta\nu) \left[\int d^{2}\mathbf{U}' |\tilde{A}(\mathbf{U}_{n}-\mathbf{U}')|^{2}\right]$$

The HI signal

Chatterjee, Bharadwaj & Marthi, 2017

The HI signal

 $\bar{T}(z) = 4.0$ Prediction for $C_{l}(\Delta v=0)$ considering the instrument response

Forecast for HI detectability

Signal-foreground separation

Summary

- OWFA is upgraded ORT new flexible backend
- Transients and FRB searches large FoV
- z=3.3 is interesting, accessible to OWFA
- Visibility-based power spectrum estimation
- Polarization is unknown territory
- Transit / tracking observations
- Full-spec correlator ready, to be deployed, testing in progress

Marthi, Chatterjee, Chengalur & Bharadwaj, 2017, MNRAS.

Chromatic systematics

$$\mathbf{S}_{2}(\mathbf{U}_{n},\nu_{i},\nu_{j}) \sim |\mathbf{I}(\boldsymbol{\theta},\nu_{0})|^{2} |\mathbf{A}(\boldsymbol{\theta},\nu_{0})|^{2} e^{-i2\pi m \left(\frac{nd}{\lambda_{0}}\right) \left(\frac{\nu_{i}-\nu_{j}}{\nu_{0}}\right)}$$

Chromatic systematics

