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The Ooty Wide Field Array
• Upgrade to the Ooty 

Radio Telescope (ORT) 

• 530m X 30m,            
1056 dipoles 

• Operates at 327 MHz, 
mostly IPS and pulsars 

• Located on a hill,        
11º slope 

• Equatorial mount 

• EW mechanical,          
NS electronic



The Ooty Wide Field Array
๏ Phase-II : FoV = 28º X 

2º 264 antennas

๏ Phase-I : FoV = 4.5º X 
2º 40 antennas

๏ Bandwidth = ~35 MHz 

๏ z = 3.35 for HI

๏ Tsys = 150 K
Subrahmanya, Manoharan & 

Chengalur, 2017
Prasad & Subrahmanya, 2010
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visibilities. We see that the simulations are in very good
agreement with the linear theory predictions.
We next consider how the visibility correlation

V2(Un,!ν) varies with respect to !ν. It is convenient
to use the frequency decorrelation function κUn (!ν)
(Datta et al. 2007) which is defined as

κUn(!ν) = V2 (Un,!ν)

V2 (Un, 0)
. (14)

This quantifies how rapidly the HI signal decorrelates
as we increase the frequency separation !ν. The corre-
lation is maximum for !ν = 0 where κUn(!ν = 0) =
1, and the linear theory analytic calculations (Ali &
Bharadwaj 2014) predict the correlation to fall as !ν is
increased. Figure 4 shows the variation of the decorre-
lation function as a function of !ν for different values
of Un. We observe that the simulations (dashed lines)
are in good agreement with the linear theory predic-
tions (solid lines) for all values of Un. The HI signal
decorrelates slowly with increasing !ν at the short
baseline (e.g. Un = 12.5 for n = 1) in comparison to
the long baselines (e.g. Un = 250 for n = 20) where
the HI signal decorrelates relatively rapidly. We see that
for n = 1 we have κUn (!ν) = 0.5 at !ν ≈ 1MHz
beyond which the value of κUn (!ν) falls further. In
comparison, for n = 20 we have κUn (!ν) = 0.5 at a
smaller frequency separation of !ν ≈ 0.4MHz.
In summary, we note that our results show that

the simulations faithfully reproduce both the Un
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Figure 4. This shows the frequency decorrelation functions
κUn(!ν) as a function of !ν at three different Un values.
Solid lines show the linear theory predictions and dashed
lines are the results obtained from the simulations.The
shaded regions show the 1 σ variation measured from 180
realizations of the simulated visibilities. We see that the
signal decorrelates more rapidly at the longer baselines as
compared to the shorter ones.

and the !ν dependence of the visibility correlation
V2(Un,!ν) expected from the linear theory predictions
(equation (12)) thereby validating the simulations.

5. Particle-based simulation

The simulations presented in the previous section treat
the HI signal entirely as a diffuse radiation field and are
completely oblivious to the discrete nature of the astro-
physical sources which host the HI. While each discrete
source subtends an angle that is much smaller than the
angular resolution of OWFA, the velocity structure of
the HI inside the individual sources is well within reach
of OWFA’s frequency resolution and this is expected
to have an impact on the observed HI signal. In this
section, we outline a particle-based simulation which
allows the flexibility of introducing any desired line
profile for the radiation from the individual sources.
The simulation technique here follows an earlier work
(Bharadwaj & Srikant 2004).
The simulation uses a cosmological Particle Mesh

(PM) N-body code to generate the dark matter par-
ticle distribution at z = 3.35. The simulations were
done using a N3 = [2048]3 grid which corresponds
to a comoving volume of [2944 Mpc]3 with [1024]3
particles in it. We have chosen the grid spacing L =
1.4375Mpc so that it exactly matches the frequency
channel width L = r

′ × (!νc). We also incorporate the
redshift space distortion effect from the velocity infor-
mation of the dark matter particles. Figure 5 shows the
ratio of the power spectrum of the density fluctuations
in the dark matter distribution fromN-body simulations

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0.01  0.1  1

z = 3.35

Figure 5. This shows the ratio of the power spectrum of
density fluctuations from N -body simulations and the z =
3.35 linear theory predictions. The power spectra shown here
do not incorporate redshift space distortions.
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1. INTRODUCTION

hydrogen in absorption against the CMB. During the cosmic dawn, the scattering of

Lyα photons produced by the first stars couples the spin temperature to the kinetic

temperature, i.e. via the Wouthuysen-Field effect (Wouthuysen, 1952; Field, 1958,

1959; Madau et al., 1997; Loeb & Barkana, 2001), resulting in the spin temperature

falling below the CMB temperature. At these epochs, the spin temperature Ts has

been predicted to be about 100 mK lower than the CMB temperature TCMB, giving

rise to a 21-cm absorption signal against the CMB (e.g. Bharadwaj & Ali, 2004; Chen

& Miralda-Escudé, 2004; Loeb & Zaldarriaga, 2004). As structure formation proceeds

the gas also begins to get heated up, via X-ray and ionising emission from the early type

stars and blackholes. The spin temperature eventually exceeds the CMB temperature,

and the gas would be seen in emission. Finally the gas ionises. The ionising regions are

at first confined to regions around the ionising sources, but gradually grow and merge

until the entire IGM is ionised. The universe is now in the post-reionisation era where,

as discussed above, neutral gas is confined to collapsed objects. The emission from

the individual objects is too faint to be detected by the current generation of radio

telescopes. However, low angular resolution observations are sensitive to the total

emission from all the objects within the resolution element, which allows one to make

measurements of the auto-correlation function of the hydrogen emission, or its cross-

correlation with other tracers of the large scale structure (see e.g. Bharadwaj & Sethi,

2001; Chang et al., 2008; Wyithe & Loeb, 2009). The angular two-point correlation

function is given by

ζ(θ) = ⟨I(x)I(x+ θ)⟩ (1.2)

where I(x) is the intensity of the 21-cm emission arising from the point x. This is

related to the power spectrum P (k) through a Fourier transform. We discuss next

the expected power spectrum of the Hi 21-cm brightness fluctuations. The global

mean post-EoR Hi brightness temperature T̄ (see e.g. Bharadwaj & Ali, 2005; Ali &

Bharadwaj, 2014) can be expressed as

T̄ (z) = 4.0 (1 + z)2
(
Ωbh2

0.024

)(
0.7

h

)(
H0

H(z)

)
mK (1.3)

where z is the redshift of observation, Ωb is the baryon density. Most of the experiments

discussed below aim at detecting not the global signal, but the fluctuations about the

mean as characterised either by (a) the angular two-point correlation function ζ(θ), or
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Fisher Matrix Predictions for the 21-cm Signal with OWFA 393

Figure 4. This shows the diagonal (thick red curve) and the off-diagonal (thin blue curve)
elements of the signal contribution to the covariance matrix Sab(m) m = 1, 8 and 32. The sys-
tem noise contribution (thick dashed black curves) to Cab(m) is shown for different observing
times indicated in the figure.

the larger baselines which have a lesser redundancy NA − a. The power spectrum
PHI(k) is a decreasing function of k for k ≥ 0.1Mpc−1, and most of the modes
that will be probed by OWFA lie in this range. For a fixed m, the signal contribu-
tion is nearly flat for U < rνm/(Br

′
ν) and then decreases if U is increased further.

For m = 1, the signal at small baselines U ≤ 10 is comparable to the noise for
T = 100 h. The signal is smaller than the noise at larger baselines. The overall
amplitude of the signal contribution decreases for larger values of m, The signal
covariance falls by a factor of ∼10 from m = 1 to m = 8, and it is comparable to
the noise for T = 1000 h. The signal falls by another factor of ∼20 from m = 8 if
we consider m = 32. We see that the HI signal is relatively more dominant at small
delay channels and small baselines. The HI signal is considerably weaker at larger
m and U , the noise also is considerably higher at larger baselines.

4. Results

We have assumed that the HI gas, which is believed to be associated with galaxies,
traces the underlying matter distribution with a constant scale independent large-
scale linear HI bias bHI. Incorporating redshift space distortion, we have the HI
power spectrum

PHI(k) = A2
HI T̄

2[1+ β µ2]2 P(k) , (15)

where P(k) is the matter power spectrum, µ = k∥/k and

T̄ (z) = 4.66mK (1+ z)2
(

#bh
2

0.022

) (
0.67
h

) (
H0

H(z)

)
. (16)

The parameter AHI in equation (15) sets the overall amplitude of the HI power
spectrum, and AHI = x̄HI bHI, where x̄HI is the mean neutral hydrogen fraction. The
parameter β = f (#)/bHI is the linear redshift distortion parameter. Note that the
various terms in equation (15) are all at the redshift where the HI radiation originated,
which is z = 3.35 for the OWFA.
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We have used the value x̄ HI = 0.02 which corresponds to !gas = 10−3 from DLA
observations (Prochaska &Wolfe 2009; Noterdaeme et al. 2012; Zafar et al. 2013) in
the redshift range of our interest. The N-body simulations (Bagla et al. 2010; Guha
Sarkar et al. 2012) indicate that it is reasonably well justified to assume a constant
HI bias bHI = 2 at wave numbers k ≤ 1Mpc−1, and we have used this value for our
entire analysis. This is also consistent with the semi-empirical simulations of Marin
et al. (2010). Using these values and the cosmological parameter values assumed
earlier, we have AHI = 4.0× 10−2 and β = 4.93× 10−1 which serve as the fiducial
values for our analysis.

We have assumed that T̄ and the #CDM matter power spectrum P(k) are pre-
cisely known, and we have used the Fisher matrix analysis to determine the accuracy
with which it will be possible to measure the parameters AHI and β using OWFA
observations. The Fisher matrix analysis (equation (8)) was carried out with the two
parameters q1 = ln(AHI) and q2 = ln(β).

We first focus on estimatingAHI, the amplitude of the HI signal. The Fisher matrix
element

√
F11 gives the signal-to-noise ratio (SNR) for the detection of the HI sig-

nal (AHI), provided the value of β is precisely known a priori (conditional SNR).
The left panel of Figure 5 shows the expected conditional SNR as a function of the
observing time, and tC in Table 3 summarizes the time requirements for 3 − σ and
5 − σ detections. In reality, the value of β is not known a priori, and one hopes
to measure this from HI observations. While the cosmological parameters which
determine f (!) are known to a relatively high level of accuracy, there is no direct
observational handle on the value of bHI at present. It is therefore necessary to allow
for the possibility that bHI can actually have a value different from bHI = 2 assumed
here. A recent compilation of the results from several studies (Padmanabhan et al.
2015) has constrained bHI to be in the range 1.090 ≤ bHI ≤ 2.06 in the redshift range
3.25 ≤ z ≤ 3.4. In our analysis, we have allowed bHI to have a value in a larger inter-
val 1.0 ≤ bHI ≤ 3.0, and we have marginalized β over the corresponding interval
0.329 ≤ β ≤ 0.986. The right panel of Figure 5 shows the expected marginalized
SNR as a function of the observing time, and tM in Table 3 summarizes the time
requirements for 3 − σ and 5 − σ detections.

Figure 5. The conditional (left) and marginalized (right) SNR for AHI as a function of the
observing time for the different phases as indicated in the figure. The horizontal dashed and
solid lines show SNR = 3 and 5 respectively.
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Zafar et al., 2013
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SNR = AHI /△AHI 
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are precisely known. Here, we calculate σic for the i-th
bin by assuming that the values of β and [P r

T]j are
precisely known for all the other bins. We use σic =
1/

√
Fii to compute the conditional error for the i-th bin.

In the second situation, we have considered the
marginalized errors σim for the measurement of [P r

T]i .
The marginalized error σim gives the error on the mea-
surement of[P r

T]i without assuming any prior informa-
tion about the other parameters. While estimating the
error for the i-th bin, we have marginalized over the
values of β and [P r

T]j in the other bins. In our previous
work (Paper II), we have calculated the marginalized
error on the measurement of the amplitude of the HI
power spectrum with a prior on β in the range 0.329 ≤
β ≤ 0.986. In the present work, we have not imposed
any prior on β and we have marginalized ln([P r

T]i )
and ln(β) over the entire range −∞ to +∞. We use
σim =

√
[F−1]ii to calculate the marginalized error

for the i-th bin. The conditional and the marginalized
errors here represent the two limiting cases, and the
error estimates would lie somewhere in between σic
and σim if we impose priors on the value of β or any of
the other parameters.
In Paper II, we have shown that a 5σ detection of

the amplitude of the P r
T is possible with ∼150 hours of

observations. We therefore need to consider an observ-
ing time t > 150 h for measuring the [P r

T]i in different
k-bins. Figure 1 shows both the conditional (σic) and
marginalized (σim) errors for 1000 hours of observa-
tion. Here σic and σim are respectively the conditional
and marginalized errors for different ln([P r

T]i ) which
are the parameters for the Fisher matrix analysis. Here
σic and σim represent the two limiting cases for the
error estimates. We expect the error estimates to lie

 0.1

 1
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Figure 1. The figure shows the fractional errors for the
measurement of ln([P r

T]i ) in different k-bins with 1000
hours of observation for two situations, conditional σic
(red solid line) and marginalized σim (green dashed line)
errors.

between these two limiting values in case we impose a
prior on the value of β (Paper II).
We find that the values of σic and σim agree within

15%, except at the k-bins lying in the range 0.06 ≤
k ≤ 0.3 Mpc−1 where the difference is ∼20−35%.
This suggests that σic = 1/

√
Fii and σim =

√
[F−1]ii

are not significantly different, indicating that the con-
tribution from the off-diagonal terms of Fij are small.
We therefore conclude that the measurements of P r

T in
different k-bins are by and large uncorrelated. In sub-
sequent analysis, we have used σic for predicting errors
on the measurements of [P r

T]i in different k-bins.
Figure 2 shows the binned HI power spectrum [P r

T]i
with the 1σ errors #[P r

T]i = σic × [P r
T]i for 1000

hours of observation. The error #[P r
T]i on the mea-

surement of the P r
T in a given k-bin is the combination

of contributions from the system noise and the cosmic
variance. The noise term in equation (6) is suppressed
by the factor (264 − a)−1 due to the redundancy of
the OWFA baselines. We see that the noise contribu-
tion goes up as the baseline number a is increased. The
small k-bins which correspond to small baselines, have
smaller noise contribution than the larger k-bins which
correspond to large baselines. Here we have used loga-
rithmic binning where the bin width and the number of
k-modes in a bin increase with k. The cosmic variance
in a given k-bin goes down with number of k-modes
in that bin. We therefore expect the cosmic variance to
be maximum at the smallest k-bin and decrease with
increasing k. As a whole the errors at smaller k-bins
are dominated by the cosmic variance whereas at larger
k-bins, the errors are dominated by the system noise.
We can see from Fig. 1 that σic = #[P r

T]i/[P r
T]i ,

which is the relative error on the binned power spec-
trum, is minimum in the range k ∼ 0.1−0.2Mpc−1.
The cosmic variance dominates the relative error at
smaller values of k (<0.1Mpc−1) whereas the system
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Figure 2. The binned HI power spectrum [P r
T]i (points)

with 1σ errors (vertical bars) for 1000 hours of observation.

Binned power spectrum
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Redundancy and redundancy calibration
3.3 Prowess - OWFA emulator

d d d d d dd

b

z

z
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Figure 3.6: The aperture arrangement for OWFA.

A(∆ny,∆nz) can be modelled as a product of sinc2 functions:

A(∆ny,∆nz) = sinc2
(
πb∆ny

λ

)
sinc2

(
πd∆nz

λ

)
(3.10)

However, the primary beam should infact be written as

A(θ, ν) =

(
sin
(
π dν

c (δ − δ0) cos δ0
)

π dν
c (δ − δ0) cos δ0

)2(
sin
((
π bν

c

)
(α− α0)

)

π bν
c (α− α0)

)2

(3.11)

The cos δ0 factor in the primary beam function arises from the fact that the aperture is

foreshortened in the d direction as seen from the source at δ0. This effective reduction

in the aperture size results in a broader primary beam as the declination increases, as

well as reduced sensitivity. In Prowess, by default for Mode-I, the beam is computed

out upto ∼ 18◦ from the phase centre in each direction. This corresponds to three

sidelobes north-south, and 10 sidelobes east-west at δ0 = 0◦. The beam is computed

and stored as an array, with a pixel resolution ∼ 1.0′ × 1.0′ and 2048 × 2048 pixels

across. The simulated foreground maps, discussed in Chapter 5, are also computed

and stored in an identical sized array. The sinc2 beam used here is considered only

as a worst-case scenario, i.e., as having the most pronounced sidelobes. In practice,

the beam is a Gaussian in the east-west dimension as confirmed independently from

slew-scan measurements. The full extent of the simulated primary beam power pattern

is shown in Figure 3.7 at four different declinations. Having said that, Prowess can

accommodate any definition for the primary beam power pattern, and it need not be

constrained to the two-dimensional sinc2 pattern.
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Fast N2 non-linear solver, 
 can run in real time

6.3 Simulations and results

d/λ 2d/λ 3d/λ

A(U, ν)
∼

0 u

2
λ /bd

Figure 6.5: The U range and the respective weights contributed to each visibility
from the redundant baseline pair and the adjacent baseline. The hatched region has
contribution to the baseline under consideration from the adjacent baseline or baselines.

dependence in the form of the primary beam and the chromatic baseline length will

introduce instrumental spectral variation in the estimator. To determine the form of

the spectral dependence, we start with equation 6.9, which is repeated here so that

this discussion is self-contained:

S2(Un,∆ν) =

(
∂B

∂T

)2

Cℓ(∆ν)

[∫
d2U′

∣∣∣Ã(Un −U′)
∣∣∣
2
]

(6.14)

where

∣∣∣Ã(Un −U′)
∣∣∣
2

=
λ2

bd
Λ

(
uλ

d

)
Λ

(
vλ

b

)
(6.15)

is the Fourier transform of the primary beam power pattern, or the convolution of the

rectangular aperture with itself, U = (u, v) and Λ(x) is the triangular function defined

as

Λ(x) = 1− |x| for |x| < 1, and Λ(x) = 0 for |x| ≥ 1. (6.16)

Λ(u) is periodic in u with period d/λ. Consider the Galactic diffuse foreground, de-

scribed by a single power law as in equation 5.2. Given that ℓ = 2πU where U = d/λ,

we may write

Cℓ ∝
(
λ

d

)γ

(6.17)

Substituting for all the terms, equation 6.14 can be rewritten as

S2(Un,∆ν) ∝
(
2kB
λ2

)2( λ

λ0

)2α(1000λ

2πd

)γ (λ2

bd

)
(6.18)
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Visibility covariance power spectrum estimator

Phase-I 
Antennas		 : 40                   Unique baselines     : 39 
Baselines    : 780                 Channels                 : 312 
 
One Hermitian product per baseline, each 312 X 312. 
 

Datta & Choudhury 2007

Marthi, Chatterjee, Chengalur & Bharadwaj 2017.
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The HI signal

1. INTRODUCTION

hydrogen in absorption against the CMB. During the cosmic dawn, the scattering of

Lyα photons produced by the first stars couples the spin temperature to the kinetic

temperature, i.e. via the Wouthuysen-Field effect (Wouthuysen, 1952; Field, 1958,

1959; Madau et al., 1997; Loeb & Barkana, 2001), resulting in the spin temperature

falling below the CMB temperature. At these epochs, the spin temperature Ts has

been predicted to be about 100 mK lower than the CMB temperature TCMB, giving

rise to a 21-cm absorption signal against the CMB (e.g. Bharadwaj & Ali, 2004; Chen

& Miralda-Escudé, 2004; Loeb & Zaldarriaga, 2004). As structure formation proceeds

the gas also begins to get heated up, via X-ray and ionising emission from the early type

stars and blackholes. The spin temperature eventually exceeds the CMB temperature,

and the gas would be seen in emission. Finally the gas ionises. The ionising regions are

at first confined to regions around the ionising sources, but gradually grow and merge

until the entire IGM is ionised. The universe is now in the post-reionisation era where,

as discussed above, neutral gas is confined to collapsed objects. The emission from

the individual objects is too faint to be detected by the current generation of radio

telescopes. However, low angular resolution observations are sensitive to the total

emission from all the objects within the resolution element, which allows one to make

measurements of the auto-correlation function of the hydrogen emission, or its cross-

correlation with other tracers of the large scale structure (see e.g. Bharadwaj & Sethi,

2001; Chang et al., 2008; Wyithe & Loeb, 2009). The angular two-point correlation

function is given by

ζ(θ) = ⟨I(x)I(x+ θ)⟩ (1.2)

where I(x) is the intensity of the 21-cm emission arising from the point x. This is

related to the power spectrum P (k) through a Fourier transform. We discuss next

the expected power spectrum of the Hi 21-cm brightness fluctuations. The global

mean post-EoR Hi brightness temperature T̄ (see e.g. Bharadwaj & Ali, 2005; Ali &

Bharadwaj, 2014) can be expressed as

T̄ (z) = 4.0 (1 + z)2
(
Ωbh2

0.024

)(
0.7

h

)(
H0

H(z)

)
mK (1.3)

where z is the redshift of observation, Ωb is the baryon density. Most of the experiments

discussed below aim at detecting not the global signal, but the fluctuations about the

mean as characterised either by (a) the angular two-point correlation function ζ(θ), or

8

LCDM P(k)
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of [4048Mpc]3. The considered volume is kept few
times larger to incorporate the side lobe contributions
(Fig. 1), that comes from the radiation received in the
side lobes of the antenna pattern.
We use the input power spectrum PT(k) to generate

the Fourier components of the brightness temperature
fluctuations

!T (k) =
√
VPT (k)

2
[a(k)+ ib(k)] (8)

on a grid of wave vectors k corresponding to the simu-
lation volume. Here a(k) and b(k) are two real-valued
independent Gaussian random variable of unit variance
which satisfy

⟨a(k)a(k′)⟩ = ⟨b(k)b(k′)⟩=δk,k′,

⟨a(k)b(k′)⟩=0 ∀ k, k′. (9)

The Fourier transform of!T (k) yields a single realiza-
tion of the 21-cm brightness temperature fluctuations
δT (x) on the simulation grid. These fluctuations are,
by construction, a Gaussian random field with the input
21-cm power spectrum. We use different sets of the
random variables a(k) and b(k) to generate different
statistically independent realizations of δT (x). Note
that the adopted PT (k) include the effect of redshift
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Figure 1. The upper panel shows a single realization of the
simulated redshifted 21-cm brightness temperature fluctua-
tions δT (θ, νa) as a function of θ for a fixed νa correspond-
ing to the central frequency channel. Note that the angular
extent shown here corresponds to the region which was actu-
ally cut out from the entire simulation volume and used to
calculate the OWFA visibilities. The lower panel shows a
similar plot of the beam pattern A(θ, νa).

space distortion along the line of sight. Figure 2 shows
a comparison of the input model power spectrum with
the power spectrum estimated from a single realiza-
tion of the simulation. We find that the simulated power
spectrum is in good agreement with the input model.
The simulation volume is aligned with the z axis

along the line-of-sight. This corresponds to a frequency
width of ∼9 × 39 MHz along the z axis. We have cut
the box into 9 equal segments along the line-of-sight to
produce 9 independent realizations each corresponding
to a bandwidth of 39MHz. The grid index, measured
from the further boundary and increasing towards to
observer along the line-of-sight was directly converted
to channel number a = 0, 1, 2, . . . , Nc − 1 whereby
νa = 307MHz + aL/r ′ . The two transverse direc-
tions were restricted to 1553Mpc and 4048Mpc along
the x and y axes respectively, and these were converted
to angles relative to the center (θx , θy) = (x/r , y/r).
The extent along the x and y axes were chosen so
as to contain approximately the first three nulls of the
beam pattern A(θ, νa) (bottom panel of Fig. 1) along
each direction. The cut out region of the simulation
box procedure provides us with δT (θ, νa) the bright-
ness temperature fluctuation on the sky (upper panel of
Fig. 1) at different frequency channels νa .
We calculate the visibilities using a discretized ver-

sion of eq. (5) whereby

V(Un, νa) =
(

∂B

∂T

)
(!θ)2

∑

g

A(θg, νa)δT (θg, νa)e−2π iUnθyg (10)
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 0.001  0.01  0.1 1

z = 3.35

Input power spectrum
Output from simulation

Figure 2. The solid blue curve shows the input model 21-
cm brightness temperature power spectrum PT(k), and the
points show PT(k) calculated from one realization of the
simulation. Both have been averaged over µ to remove the µ
dependence.

Chatterjee, Bharadwaj & Marthi, 2017



The HI signal
T̄ (z) = 4.0 (1 + z)2

(
Ωbh2
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Prediction for Cl(△V=0) considering the instrument response

Marthi, Chatterjee, Bharadwaj & Chengalur, 2018, in prep.



Forecast for HI detectability
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noise dominates at larger k values (>0.2Mpc−1). We
also see that the relative error is lower than 0.2 in
the range 0.05 ≤ k ≤ 0.3Mpc−1 where our results
predict a 5σ detection of the binned power spectrum
(Fig. 2).
We have so far considered the errors on the measure-

ment of[P r
T]i with given hours of observing time (1000

h). We shall now try to understand how the errors σic
vary with observation time t . The time dependence of
the visibility covariance Cab(m) (equation (6)) comes
in through the rms noise of the measured visibilities
σN which scales inversely with

√
t , i.e. σN ∼ 1/

√
t .

We expect the visibility covariance Cab(m) to vary
inversely with t , i.e. Cab(m) ∼ 1/t for small observ-
ing times where the noise contribution is considerably
larger than the signal, and we expect Cab(m) to have a
constant value, independent of the observing time, for
large values of t . The derivatives of the Cab(m) which
appear in the Fisher matrix (equation (7)) are indepen-
dent of t . It then follows that the Fisher matrix Fαγ

scales as Fαγ ∼ t2 for small observation times and Fαγ

has a constant value for large t . We therefore expect
the relative errors σic to vary as σic ∼ 1/t for small
observing times, and become independent of t for large
observation times where the error is dominated by the
cosmic variance.
Figure 3 shows a contour plot of the signal-to-noise

ratio (SNR)

SNR = 1
σic

= [P r
T]i

$[P r
T]i

, (11)

as functions of the Fourier mode k and observation time
t . We see that a statistically significant measurement
(3σ ) of the binned power spectrum is only possible for
observation times greater than 200 h. A 3σ detection of
[P r

T]i is possible in the k-range 0.04 ≤ k ≤ 0.2 Mpc−1
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Figure 3. The SNR contours as a function of k-bin and
observation time t .

with 200−300 hours of observation. Detection at a sig-
nificance of 5σ is not possible with t ≤ 500 hours of
observation. We find that a 5σ detection of[P r

T]i is pos-
sible for 0.05 ≤ k ≤ 0.3 Mpc−1 with 1000 hours of
observing time. Note that the SNR peaks in the range
k ∼ 0.1−0.2 Mpc−1. In this k range the SNR continues
to increase with t for the entire t range shown here and
a 10σ detection is possible with 2000 hours of obser-
vation. At k < 0.1Mpc−1, the SNR stops increasing
with t beyond a certain point. The SNR here becomes
dominated by the cosmic variance as t is increased, and
the SNR contour becomes parallel to the t axis. We see
that irrespective of the observing time, a 5σ detection is
not possible for k < 0.036Mpc−1, if only one pointing
is considered. For k > 0.2Mpc−1, the error is system
noise dominated, and the SNR continues to increase
with increasing t . However, we see that a 5σ detection
is not possible for k > 0.5Mpc−1 within 2000 hours of
observation.
As mentioned earlier, we expect SNR ∝ t for

small observing times when the error is system noise
dominated, and we expect the SNR to saturate at a
fixed value for large observing times where the cos-
mic variance dominates. Figure 4 shows how the SNR
changes with observing time t for a few representative
k-bins. The small k bins have a relatively large cos-
mic variance. We see that the SNR at the smallest k
bin (0.036Mpc−1) shown in this figure is nearly satu-
rated at a very small observing time (t ∼ 300 h), and
increases very slowly for larger observing times. A 5σ
detection in this bin requires ∼10000 hours of obser-
vation. The k-bin at 0.33Mpc−1 shows the SNR ∝ t
scaling for t ≤ 700 h, beyond which the increase in
SNR is slower. The two larger k-bins show the SNR ∝
t behaviour over the entire t range considered here.
However, note that the largest k-bin with ki =
1.16Mpc−1 shown in the figure has a rather low SNR,
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100 1000 10000

Figure 4. The signal-to-noise ratio (SNR) with observation
time t for different ki values (mentioned in the figure).
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with 200−300 hours of observation. Detection at a sig-
nificance of 5σ is not possible with t ≤ 500 hours of
observation. We find that a 5σ detection of[P r

T]i is pos-
sible for 0.05 ≤ k ≤ 0.3 Mpc−1 with 1000 hours of
observing time. Note that the SNR peaks in the range
k ∼ 0.1−0.2 Mpc−1. In this k range the SNR continues
to increase with t for the entire t range shown here and
a 10σ detection is possible with 2000 hours of obser-
vation. At k < 0.1Mpc−1, the SNR stops increasing
with t beyond a certain point. The SNR here becomes
dominated by the cosmic variance as t is increased, and
the SNR contour becomes parallel to the t axis. We see
that irrespective of the observing time, a 5σ detection is
not possible for k < 0.036Mpc−1, if only one pointing
is considered. For k > 0.2Mpc−1, the error is system
noise dominated, and the SNR continues to increase
with increasing t . However, we see that a 5σ detection
is not possible for k > 0.5Mpc−1 within 2000 hours of
observation.
As mentioned earlier, we expect SNR ∝ t for

small observing times when the error is system noise
dominated, and we expect the SNR to saturate at a
fixed value for large observing times where the cos-
mic variance dominates. Figure 4 shows how the SNR
changes with observing time t for a few representative
k-bins. The small k bins have a relatively large cos-
mic variance. We see that the SNR at the smallest k
bin (0.036Mpc−1) shown in this figure is nearly satu-
rated at a very small observing time (t ∼ 300 h), and
increases very slowly for larger observing times. A 5σ
detection in this bin requires ∼10000 hours of obser-
vation. The k-bin at 0.33Mpc−1 shows the SNR ∝ t
scaling for t ≤ 700 h, beyond which the increase in
SNR is slower. The two larger k-bins show the SNR ∝
t behaviour over the entire t range considered here.
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Figure 4. The signal-to-noise ratio (SNR) with observation
time t for different ki values (mentioned in the figure).
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Signal-foreground separation
6. POWER SPECTRUM ESTIMATION
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Figure 6.20: The decorrelation of the visibility correlation for the baselines of Mode-I
of OWFA. The decorrelation curves have been obtained from the S2(∆ν) curves after
averaging over five different realisations of the Hi signal, equivalent to observing five
different, non-overlapping direections at δ0 = 0. On most baselines, there is little signal
beyond ∼ 1 MHz.
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Figure 6.21: The angular power spectrum Cℓ(∆ν = 0) recovered from the estimator
S2(νi = νj) averaged over five realisations of the Hi signal is shown here for OWFA
Mode-I. The 1σ error bars have been obtained from the APS of each of the realisations.
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6.5 The cylindrical power spectrum

Figure 6.9: The cylindrical power spectrum for a noise-free, foreground-only sky model
simulated for the Mode-I system of OWFA. The foreground wedge is clearly visible.
The dashed line denotes the boundary of the wedge, which is related to the angular
extent of the simulated map. In practice, its extent would depend on the FoV. The
solid line denotes the horizon limit.

153

6.8 The Hi power spectrum

Figure 6.22: The cylindrical power spectrum for the realisation of the Hi signal shown
in Figure 5.10, derived from the S2 matrices shown in Figure 6.19. The solid line shows
the horizon limit and the dashed line the boundary of the foreground wedge expected
for the angular extent of the simulated maps. Most of the cosmological Hi signal is
expected to fall in the complementary “foreground-free” region, which can be isolated
from the foreground emission in the wedge.
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Summary
✦  OWFA is upgraded ORT - new flexible backend 
✦  Transients and FRB searches - large FoV 
✦  z=3.3 is interesting, accessible to OWFA 
✦  Visibility-based power spectrum estimation 
✦  Polarization is unknown territory 
✦  Transit / tracking observations 
✦  Full-spec correlator ready, to be deployed,  testing in 

progress
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Instrument and foreground simulations



Chromatic systematics
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6. POWER SPECTRUM ESTIMATION

of ∆ν = |νi − νj | alone, then we could have dealt only with the averages along the

diagonals of S2. However since ⟨Vn(νi)V∗
n(νj)⟩ is in reality a function of both νi and νj ,

it is useful to retain the full information contained in the S2 matrix. We shall return

to the usefulness of this representation later in the context of foreground subtraction.

6.4 Systematic signatures in the estimator

Having obtained the estimate for the multi-frequency angular power spectrum, let

us now discuss the most important aspect of foreground estimation: the systematic

instrumental effects. Numerous studies have addressed the problem of instrumental

effects on the estimation of the Hi signal, and the limitations posed by effects such

as residual foreground contamination (see e.g. Liu & Tegmark, 2012), mode-mixing

(Bowman et al., 2009; Thyagarajan et al., 2013) or chromatic instrumental effects

(Vedantham et al., 2012). Some of these studies have addressed these effects in general

while others discuss them in the context of a specific instrument (e.g. Vedantham et al.,

2014, for LOFAR). An analysis for OWFA is carried out here. This is motivated by

the need to understand the effects introduced by the specific instrument, and to devise

ways and means to handle such effects in real data.

6.4.1 Sources at large angular distances

The effects of sources at large angular distances from the pointing centre coupling in

through the primary beam is well-known (see e.g. Datta et al., 2010; Vedantham et al.,

2012; Pober et al., 2013a). Consider a single point source at the co-ordinates θ = (l,m).

Let us also assume that the pointing of observation is (α0 = 0, δ0 = 0) without loss of

generality. For the nth baseline in the linear array, we note that at frequency ν = c/λ,

Un = nU1 = n
d

λ
= n

d

λ0

λ0
λ

(6.21)

The visibility, obtained as a Fourier sum in the simulation and given in equation 5.23,

simplifies to

M(U, ν) =
∑

θ

I(θ, ν) A(θ, ν) e−i2πmnd
λ0

λ0
λ (6.22)

Since V(U, ν) represents an estimate of M(U), the two-visibility correlation at (νi, νj)

for this baseline becomes

S2(Un, νi, νj) ∼ |I(θ, ν0)|2 |A(θ, ν0)|2 e
−i2πm

(
nd
λ0

)(
νi−νj

ν0

)

(6.23)
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assuming that the approximations

|I(θ, ν0)|2 = I(θ, νi)I
∗(θ, νj) (6.24)

and

|A(θ, ν0)|2 = A(θ, νi)A
∗(θ, νj) (6.25)

are reasonable, but in general not strictly true. A source away from the phase centre

leaves oscillatory features in the MAPS estimator, and the frequency of the oscillation

depends on the location of the source m as well on the baseline nd. It is interesting to

note that ∆ν/ν0 is of the order of 12% (∼40 MHz/327 MHz) for OWFA. The effective

contribution to the sinusoidal feature in S2 from the fractional frequency separation

∆ν/ν is small and sub-dominant, whereas contribution from distant sources (∝ m) on

the longer baselines is more dominant. The argument can be generalised to include

many point sources, and by extension to the diffuse foregrounds as well. We must note

that the sum total contribution from all emission within the field of view superimpose

with a range of phases that tend to partly cancel out. But residual features remain

imprinted on the innocuous-looking smooth spectra. Figure 6.7 shows the S2 for the

same realisation of diffuse and point source foregrounds used to obtain the plots in

Figure 6.2, but computed as a function of ∆ν by averaging along the diagonals of the

S2 matrix for two example baselines. Although the foregrounds are non-stationary as

discussed in Section 6.3, it is instructive to cast the estimator in the familiar form as

a function of ∆ν for this exercise. The apparently smooth curves in the top panels

can be fitted by low-order polynomials successively. The residual contamination can

still be seen in the bottom panels. The frequency of the oscillatory pattern is higher

as expected for longer baselines. It must be noted that the amplitude of the residual

oscillatory features is about 7 orders smaller than the visibility correlation S2, and they

are comparable to the amplitude of the expected Hi visibility correlation, which is in

the range of 10−8 − 10−9 Jy2, shown in Figure 6.19.

We have indeed seen that these residuals remain even when excluding the point

source foreground. While the contribution from point sources is significantly larger,

in random realisations we have also seen that occasionally, very bright point sources

(! 300 mJy) near the nulls exacerbate the problem, leaving stronger oscillatory resid-

uals. Chapman et al. (2012) have discussed such effects in the context of foreground

removal on simulated foregrounds for LOFAR EoR. They further point to studies (Bow-

man et al., 2006; Liu et al., 2009b) which have painted an optimistic picture: that

these residuals are likely to be fainter than the Hi signal. In figure 6.7, the residuals
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Chromatic systematics

6. POWER SPECTRUM ESTIMATION

Figure 6.8: The normalised estimator ∥ S2(ν) ∥ for different values of α and γ are
shown here. The first row shows the curves for the baseline U1 for the three values of
γ = 0, 1, 2, the second for U15, the third for U22 and the fourth for U38. Each plot has
three curves; one each for α = 0.0, 1.0, 2.0, shown by the colours blue, red and purple
respectively. The curves have been normalised to S2(ν0) at ν0 = 326.5 MHz.
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