

Why are there so many the peaked spectrum sources in the Universe?

Joe Callingham ASTRON Postdoctoral Fellow

> SALFIV, Sydney, Australia 13th of December 2017

Possible Evolutionary Picture

What are GPS/CSS Sources?

- > GPS = gigahertz-peaked spectrum ; CSS = compact steep spectrum
 - powerful AGN with concave radio spectra
 - GPS turnover ~ 1 GHz ; CSS turnover ~ 150 MHz (?)
 - small physical sizes: GPS < 1 kpc, CSS ~ 1 10 kpc
 - hosts vary: quasars, radio galaxies, and Seyferts

Tier-1 Survey and Hetdex

- > ~6" resolution
- > ~100 µJy/beam rms noise

- > ~325,000 sources
- Hetdex release in ~April 2017 under Shimwell et al. (2017)

Shimwell et al. (in prep.)

Shimwell et al. (in prep.)

NVSS – 50 sources per square degree

36.75° x 20.55

Shimwell et al. (in prep.)

FIRST - 90 sources per square degree

36.75' x 20.55'

Shimwell et al. (in prep.)

Access to a low luminosity sample of peaked spectrum sources

LoTSS – 750 sources per square degree

36.75' x 20.55

Which GPS?

Which GPS?

 10^{4}

Too many...

- > ~10 % of sources that have NVSS/WENSS counterpart are peaked-spectrum
- Obviously completeness issues but compared to complete sample with GLEAM, we have double the number of sources selected at the same frequency (~4.5%). Why?
- > 25 of 144 have spectroscopic redshift (SDSS + literature/NED)

Power to the galaxies

Callingham et al. (in prep.)

International baselines

 LOFAR international baselines can achieve a resolution of ~0.8".

Restarted?

MWA / Hurley-Walker

Summary

AST(RON

- Identified ~150 new peaked-spectrum sources in Hetdex field
- These sources are likely low luminosity counterparts to GPS sources identified at higher freq.
- > Maybe dominant precursors to FR1 galaxies?
- Finding discrepancy in the number of GPS/CSS sources selected with LoTSS with those selected by GLEAM.
 Variability bias? Evolution?
- Using the spectra is a very useful way to find restarted GPS/CSS sources

Bayesian Model Testing

Two populations!

Callingham, Rose et al. (in prep).

Possible Power Dependence?

Callingham, Rose et al. (in prep).

AST(RON

MSSS

MSSS

High Redshift Universe

What survey parameters make LoTSS look good?

Why Study GPS/CSS Sources?

- Unique view of early AGN stages; probe of environment at scales of tens of pc
- Which radio galaxies evolve into "A team" sources (Cyg A, Her A, etc)?
- Are they confined to small spatial scales due to youth, frustration, or both?
- Cause of the turnover in spectrum?
 Free-free vs synchrotron self absorption

(see Peck et al. 1999; Kameno et al. 2000; Marr et al. 2001, 2014; Orienti & Dallacasa 2008; Tremblay et al. 2008; Tingay et al. 2015, Callingham et al. 2015)

NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team

Widefield (continuum) survey evolution AST (RON

IPS tricks

Convex Source (II)

