DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

Cosmic Magnetism at Low Frequencies and Large Scales

Tessa Vernstrom

SALT IV Sydney, December 2017

What is the Cosmic Web?

- Fluctuations in the primordial matter density result in the growth of large-scale structure (LSS)
- The CDM theory predicts massive galaxies and galaxy clusters built from smaller galaxies colliding and merging
- Result is clusters, filaments, and voids we see today which form a "web" like structure

(Movie: <u>http://cosmicweb.uchicago.edu/</u>)

Diffuse Emission and The Synchrotron Cosmic Web

- Intergalactic shocks from infall into and along filaments and mergers inside clusters
 Accelerate electrons and amplify magnetic fields
 - \rightarrow producing synchrotron emission
- Synchrotron radiation should trace large-scale structure and cosmic filaments
- Signal should be strongest on scales ~ 10' to 1° at frequencies ~100 MHz

Blue = B fieldRed = Gas

F. Vazza videos link

What is the origin of extragalactic magnetic fields?

Simulation Models

Galaxy seed fields ~5nG

Homogenous cosmological seed field ~5-10nG

Simulation Models

ALMONIDAL OVIAMO CONTRACTOR FEEDBACK

Vazza+17

Mean (massweighted) B-field

AGN

Primordial

RED = Temp Green+Blue= B-field strength

Simulation Models

High amp w/reacceleration & shock injection

Vazza+15: v= 110 MHz, B₀=0.1nG at z=30

High amp + CR amp w/reacceleration & shock injection

Low amp w/reacceleration & shock injection

MID

Vazza+17

Primordial

AGN

Predicted synchrotron

F. Vazza, videos link

Simulations

- Predictions:
 - 1-2% of magnetised WHIM in filaments detectable by LOFAR, MWA, SKA
 - 5-10% of cluster outskirts may be detected
 - nano to micro Gauss range
 - Very model dependent
 - neglect artefacts, system errors, Galactic emission and point sources
- Low frequency best
- May need to wait for full SKA-low
- Still not many simulations that include magnetism
 → Need more

How can we detect it?

- Direct imaging / detection
- Statistical methods:
 - Cross Correlation
 - Stacking
 - Confusion
- Polarization:
 - Faraday rotation from background AGN
 - Dispersion from fast radio bursts

Diffuse Emission – Direct Imaging

- Diffuse emission in clusters
 - Halos
 - Mini-halos
 - Relics
 - But only ~100-150 detected (more coming now from low frequency surveys)

Ferretti et al., 2012

Radio Halos

- Giant and mini halos
- Mpc sizes, centrally located
- Unpolarized
- L_{1.4 GHz} ∼ 10²⁴ − 10²⁵ W/Hz
 - Radio luminosity scales with cluster mass
- Found in disturbed clusters
- Diffuse, low surface brightness
- Steep spectrum $\alpha \sim -1.2$
 - Can have curved spectra
 - Steepening with radial distance
- Morphology similar to X-ray or SZ emission
 - No severe projection bias
- Particle acceleration mechanisms:
 - Turbulent reacceleration
 - Secondary electrons: products of hadronic collisions

TY OF TORONTO

Radio Relics

- Elongated or filamentary ٠ morphology
- Near cluster periphery •
- Higher surface brightness ٠
- Polarized ullet
- $L_{1.4 \text{ GHz}} \sim 10^{23} 10^{25} \text{ W/Hz}$ •
- Also steep spectrum $\alpha \sim -1.2$ ٠
- Traces shocks •
 - Subject to projection bias •
- Particle acceleration mechanisms: ٠
 - Diffusive shock acceleration •
 - Shock re-acceleration
 - Adiabatic compression •

Double

Relics

New Low Frequency Observations

New Low Frequency Observations

mage credit: A. Bonafede (Hamburge Ste

Bonafede et al. LOFAR @ 140 MHz

(in collaboration with the Surveys KSP)

van Weeren et al. 2016

7" resolution

Dunlap Institute for Astronomy & Astrophysics UNIVERSITY OF TORONTO

Observations – Magnetic fields

- Dense cool-core clusters, 10–30µG (Kuchar & Enßlin 2011;Laing et al. 2008).
- Lower density clusters, 3–10µG (Feretti et al. 1999a; Guidetti et al. 2010; Kuchar & Enßlin 2011)
- Cluster haloes, 0.1 to 1µG (Feretti et al. 1999b)
- Coma Cluster
 - 0.4µG (Giovannini et al. 1993)
 - Smoothly varying field with 2±1µG in the cluster centre to 0.3±0.1µG at a distance of 1 Mpc (Brunetti et al. 2001)

Diffuse Emission – Direct Imaging

- Diffuse emission in clusters
 - Halos
 - Mini-halos
 - Relics
 - But only ~100-150 detected (more coming now from low frequency surveys)
- Only bright sources (>1mJy) in high(er) mass clusters detected.
- Difficult to directly detect due to:
 - Low surface brightness
 - Low frequencies / steep spectral indices
 - Requires high sensitivity to large angular sca
 - Sizes up to Mpc scales
 - Difficult for radio interferometer tel
 - Bright Galactic foregrounds
 - Bright point sources
 - Faint point source confusion

What is Confusion?

• Confusion is the blending of faint sources within a telescope beam

Dunlap Institute for

Astronomy & Astrophysics

FY OF TORONTO

Confusion and Diffuse Emission

- Simulated Gaussian "Halo"
 - 60" size
 - 5 mJy total brightness
 - 45" beam
 - Addition of brighter and brighter point sources
 - None brighter than 1mJy

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

0.00

How can we detect it?

- Direct imaging / detection
- Statistical methods:
 - Cross Correlation
 - Stacking
 - Confusion
- Polarization:
 - Faraday rotation from background AGN
 - Dispersion from fast radio bursts

Cosmic Web - Cross Correlation

Galaxy number density → traces thermal baryon distribution → should correlate with diffuse synchrotron

Cosmic Web - Cross Correlation

Galaxy number density → traces thermal baryon distribution → should correlate with diffuse synchrotron

2MASS Galaxy Distribution coded by redshift (photo credit :Thomas Jarrett (IPAC/Caltech)

Simulated radio synchrotron (credit: Klaus Dolag)

Cosmic Web - Cross Correlation

- Galaxy number density → traces thermal baryon distribution → should correlate with diffuse synchrotron
- How correlated as a function of distance or angular scale?
 - Unknown
- How correlated?
 - Unknown
- Reasons for a positive correlation:
 - AGN (core)
 - Starbursts and disk emission
 - AGN (WAT and NAT associated with clusters)
 - Cluster halos
 - Cluster relics
 - Synchrotron cosmic web
- Reasons for a negative correlation:
 - Galactic extinction (galaxy number counts down, synchrotron up)

Increasing angular scale

The MWA:

- Frequency range: 80 300 MHZ
- 2048 dual polarization dipoles
- Number of antenna tiles: 128
- Number of baselines: 8128
- Approximate collecting area: 2000 sq. meters
- Field of view: 15 50 deg. (200 2500 sq. deg.)
- Instantaneous bandwidth: 30.72 MHz
- Spectral resolution: 40 kHz
- Temporal resolution: 0.5 seconds
- Polarization: I, Q, U, V

Photo credit: Natasha Hurley-Walker

Good sensitivity to large angular scales, low frequency, large field of view

Cross Correlation with MWA - Radio

- Field: EoR0 RA=0 Dec= -27
- $\upsilon = 180 \text{ MHz}$
- Beam 2.3' 2.9'
- $\sigma_n = 0.6 0.96 \text{ mJy beam}^{-1}$
- $\sigma_c = 4.4 9.5 \text{ mJy beam}^{-1}$
- Subtraction limit ~ 50 mJy

Point source sub

Cross Correlation with MWA - 2MASS Galaxy Density

Cross Correlation with MWA - WISE Number Density

$$CCF(xshift, yshift) = \frac{1}{n}\sum(R_{i,j} - \bar{R})(G_{i,j} - \bar{G})$$

20 total CCFs (2 radio images x 10 number density maps)

Cross Correlation with MWA – Emission Upper Limits

gre sectors contra a sector state .

FORONTO

Cross Correlation with MWA – Emission Upper Limits

Cross Correlation with MWA – Magnetic Field Limits

Cross Correlation with MWA – Magnetic Field Limits

Cross Correlation S-PASS

- Single Dish 2.3 GHz All Sky
- Cross correlate with MHD simulation
 - Brown et al., 2017

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

Galactic and point

source filtering

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

Astronomy & Astrophysics UNIVERSITY OF TORONTO

Cross Correlation S-PASS

- Single Dish 2.3 GHz All Sky
- Cross correlate with MHD simulation
 - Brown et al., 2017

Flux upper limit: 0.16 mJy arcmin⁻²

Magnetic field upper limit: 0.13 µG

X-ray limits

- Radio emission related to X-ray emission
 - Low energy CMB photons up-scatter from electrons giving off synchrotron emission

$$\frac{L_{\rm IC}}{L_{\rm sync}} = \frac{U_0(1+z)^4}{U_{\rm B}}$$

Can use measurements of X-ray background to constrain radio

X-ray limits

- Assume ultra-relativistic
 - $\Upsilon = 10^4$
- Use median redshift
 - *z* = 0.3
- For cosmic web use flux and magnetic field limits
- For diffuse confusion limit use a range for B of
 - 0.1 < B [µG] < 6

164

Cross Correlation

Advantages:

• Enhance signals hidden in the noise

Caveats:

- Need models to interpret results physically
- Need to know (dirty) beam shape well
- Requires point source subtraction and/or model for un-subtracted sources
- Galactic emission can interfere over large areas

Planelles & Quillis (2013)

UNIVERSITY OF TORONTO

Cross Correlation – Future work

- Repeat with different:
 - area
 - frequency
 - resolution
 - sky coverage
- Other similar tests:
 - cross power correlation
 - wavelet covariance
- New MHD simulations
 - different physical models
 - simulations containing point sources / number densities
- Model for how faint point sources correlate
- Multi-frequency approach
 - combine LOFAR / MWA / GMRT with GMRT/ VLA / EMU / MeerKAT
- New / additional optical / IR data

- Stacking •
- But.... ullet
 - Off-center •
 - Extended • morpholo
 - How or where •

Stacking ٠

Rotation Measure

Rotation measure cross correlation •

Radio galaxy VLASS and Radio POSSUM telescope to add thousands **B-field along Line** of Sight more $RM = 8.12 \times 10^{5} \int (1+z)^{-2} n_{e}(z) B(z) dl(z)$ X Taylor et al. (2009) WISE galaxy redshift catalog **NVSS RM catalogue**

- Stacking
- Rotation measure cross correlation
- RM Grids

Bonafede et al. 2010,2013

- Stacking
- Rotation measure cross correlation
- RM Grids

- Stacking (e.g. Rudnick, Vazza, Farnes)
- Rotation measure cross correlation (Lee, Amaral, Gaensler et al)
- RM Grids (Vacca, Bonafeda)
- 1D & 2D P(D) confusion analysis (Vernstrom et. al 2015)
- 2D Angular power spectrum
- Cross power spectrum & Wavelet covariance
- Combinations, e.g. confusion analysis + cross correlation

Summary & Conclusions

- Simulations
 - Predict magnetic field values of 10s of nG to ~ a few microG
 - Output very model dependent
 - Likely need SKA-Low for possible WHIM detections
 - Need simulations to include point sources
- Observations
 - Find cluster magnetic fields in range ~0.1-30 µG
 - Many more detections coming from new low frequency data
 - May be limited by confusion for fainter detections
- Cross correlation technique
 - upper limits on IGM of ~0.5 microG
 - Need more/better models to interpret results
- Statistical techniques can be powerful tools for reaching below the noise
- Understanding current and developing new techniques crucial for fully utilizing new large surveys

DUNLAP INSTITUTE for **ASTRONOMY** & **ASTROPHYSICS**

www.dunlap.utoronto.ca

Dunlap Institute for Astronomy & Astrophysics UNIVERSITY OF TORONTO Cross Correlation with MWA – Magnetic Field Limits

- Stacking
- 2D P(D) analysis

- Fit 2D source count to 2D histogram
- Can be two frequencies, two resolutions, total and polarised intensity
- Provides tighter constraints, uses more data, breaks degeneracies

Stacking ٠

arcminute

OF TORONTO

- Stacking
- 2D P(D) analysis

- Fit 2D source count to 2D histogram
- Can be two frequencies, two resolutions, total and polarised intensity
- Provides tighter constraints, uses more data, breaks degeneracies

Conclusions

- · Many reasons to look for the cosmic web
 - Missing baryons, origin of cosmic magnetism,
- Many possible methods of detection
 - Direct imaging, statistical methods,
- Many new telescopes/surveys/data coming soon
 - MWA, LOFAR, ASKAP, MeerKAT, SKA,
- → Many reasons to think exciting new results in the near future

Ideal Observational Setup

FREQUENCY

- Low (ish)
 - Too low \rightarrow stronger Galaxy
 - Too high \rightarrow weaker signal

UV COVERAGE

- Good (continuous) coverage
 - Minimize sidelobes
 - Deeper cleaning

FIELD

- Large area
- Low Galactic contamination
- Multi-wavelength coverage

RESOLUTION

- High (arcsecs)
 - Point source subtraction
- Low (arcmins)
 - Diffuse emission

SENSITIVITY

- Low instrumental rms
- Good sensitivity to large and small angular scales

