Detecting topological order in the Heisenberg picture
A 1D numerical approach for 2D quantum systems

Jacob Bridgeman, Steven Flammia & David Poulin

Équipe de Recherche sur la Physique de l’Information Quantique
Département de Physique
Université de Sherbrooke

Sydney Quantum Information Theory Workshop
Coogee, Australia, February 2016
Outline

1. Introduction
2. Ribbon operators
3. Optimization problem
4. Numerical results
5. Discussion & Conclusion
Outline

1. Introduction

2. Ribbon operators

3. Optimization problem

4. Numerical results

5. Discussion & Conclusion
Given access to the ground state:

- **Topological entanglement entropy** $S(\rho_R) = \alpha |\partial R| - \gamma + \mathcal{O}(|R|^{-1})$
 - $\gamma = \log(\sqrt{\sum_c d_c^2})$.
 - Same γ for different TQFT (Heisenberg antiferromagnet on the Kagome).
 - $\gamma \neq 0$ with no topological order.

- Entanglement spectrum $\rho_R = e^{-H_{\text{eff}}}$.

- **PEPS description of ground state.**
 - String-like operators that pull through the tensors on the virtual level.

These all require access to the ground state.
Introduction

Detecting topological order

Given access to the ground state:

- **Topological entanglement entropy** $S(\rho_R) = \alpha |\partial R| - \gamma + \mathcal{O}(|R|^{-1})$
 - $\gamma = \log(\sqrt{\sum_c d_c^2})$.
 - Same γ for different TQFT (Heisenberg antiferromagnet on the Kagome).
 - $\gamma \neq 0$ with no topological order.

- Entanglement spectrum $\rho_R = e^{-H_{\text{eff}}}$.

- PEPS description of ground state.
 - String-like operators that pull through the tensors on the virtual level.

These all require access to the ground state.
Detecting topological order

Given access to the ground state:

- **Topological entanglement entropy**
 \[S(\rho_R) = \alpha |\partial R| - \gamma + \mathcal{O}(|R|^{-1}) \]
 - \(\gamma = \log(\sqrt{\sum_c d_c^2}) \).
 - Same \(\gamma \) for different TQFT (Heisenberg antiferromagnet on the Kagome).
 - \(\gamma \neq 0 \) with no topological order.

- Entanglement spectrum \(\rho_R = e^{-H_{\text{eff}}} \).

- PEPS description of ground state.
 - String-like operators that pull through the tensors on the virtual level.

These all require access to the ground state.
Detecting topological order

Given access to the ground state:

- **Topological entanglement entropy** \(S(\rho_R) = \alpha |\partial R| - \gamma + \mathcal{O}(R^{-1}) \)
 - \(\gamma = \log(\sqrt{\sum_c d_c^2}) \).
 - Same \(\gamma \) for different TQFT (Heisenberg antiferromagnet on the Kagome).
 - \(\gamma \neq 0 \) with no topological order.

- Entanglement spectrum \(\rho_R = e^{-H_{\text{eff}}} \).
- PEPS description of ground state.
 - String-like operators that pull through the tensors on the virtual level.

These all require access to the ground state
Detecting topological order

Given access to the ground state:

- **Topological entanglement entropy** $S(\rho_R) = \alpha |\partial R| - \gamma + \mathcal{O}(|R|^{-1})$
 - $\gamma = \log(\sqrt{\sum_c d_c^2})$.
 - Same γ for different TQFT (Heisenberg antiferromagnet on the Kagome).
 - $\gamma \neq 0$ with no topological order.

- **Entanglement spectrum** $\rho_R = e^{-H_{\text{eff}}}$

- **PEPS description of ground state**.
 - String-like operators that pull through the tensors on the virtual level.

These all require access to the ground state.
Detecting topological order

Given access to the ground state:

- **Topological entanglement entropy**:
 \[S(\rho_R) = \alpha|\partial R| - \gamma + O(|R|^{-1}) \]
 - \[\gamma = \log(\sqrt{\sum_c d_c^2}) \]
 - Same \(\gamma \) for different TQFT (Heisenberg antiferromagnet on the Kagome).
 - \(\gamma \neq 0 \) with no topological order.

- **Entanglement spectrum**:
 \[\rho_R = e^{-H_{\text{eff}}} \]

- **PEPS description of ground state**:
 - String-like operators that pull through the tensors on the virtual level.

These all require access to the ground state.
Detecting topological order

Given access to the ground state:

- **Topological entanglement entropy**
 \[S(\rho_R) = \alpha |\partial R| - \gamma + \mathcal{O}(|R|^{-1}) \]
 \[\gamma = \log(\sqrt{\sum_c d_c^2}) \]
 - Same \(\gamma \) for different TQFT (Heisenberg antiferromagnet on the Kagome).
 - \(\gamma \neq 0 \) with no topological order.

- **Entanglement spectrum**
 \[\rho_R = e^{-H_{\text{eff}}} \]

- **PEPS description of ground state.**
 - String-like operators that pull through the tensors on the virtual level.

These all require access to the ground state.
Given access to the ground state:

- **Topological entanglement entropy** \(S(\rho_R) = \alpha |\partial R| - \gamma + \mathcal{O}(|R|^{-1}) \)
 - \(\gamma = \log(\sqrt{\sum_c d_c^2}) \).
 - Same \(\gamma \) for different TQFT (Heisenberg antiferromagnet on the Kagome).
 - \(\gamma \neq 0 \) with no topological order.

- **Entanglement spectrum** \(\rho_R = e^{-H_{\text{eff}}} \).

- **PEPS description of ground state.**
 - String-like operators that pull through the tensors on the virtual level.

These all require access to the ground state.
Our contribution

- A numerical method to detect features of a TQFT without actually knowing the ground state!
- Can extract all the topological S matrix elements.
- The numerical problem boils down to 1D DMRG (at the operator level).
- The approach is not rigorous... it works better than it should!
- Perhaps it will fail for more challenging models.
A numerical method to detect features of a TQFT without actually knowing the ground state!

Can extract all the topological S matrix elements.

The numerical problem boils down to 1D DMRG (at the operator level).

The approach is not rigorous... it works better than it should!

Perhaps it will fail for more challenging models.
Our contribution

- A numerical method to detect features of a TQFT without actually knowing the ground state!
- Can extract all the topological S matrix elements.
- The numerical problem boils down to 1D DMRG (at the operator level).
- The approach is not rigorous... it works better than it should!
- Perhaps it will fail for more challenging models.
A numerical method to detect features of a TQFT without actually knowing the ground state!

- Can extract all the topological S matrix elements.
- The numerical problem boils down to 1D DMRG (at the operator level).
- The approach is not rigorous... it works better than it should!
- Perhaps it will fail for more challenging models.
Our contribution

- A numerical method to detect features of a TQFT without actually knowing the ground state!
- Can extract all the topological S matrix elements.
- The numerical problem boils down to 1D DMRG (at the operator level).
- The approach is not rigorous... it works better than it should!
- Perhaps it will fail for more challenging models.
A 2D system with a degenerate ground state.

- Degeneracy depends on the topology.
- No local order parameter
 - Impossible to discriminate between the different ground states by looking at a small region.
Topological order

- A 2D system with a degenerate ground state.
- Degeneracy depends on the topology.
- No local order parameter
 - Impossible to discriminate between the different ground states by looking at a small region.
Topological order

- A 2D system with a degenerate ground state.
- Degeneracy depends on the topology.
- No local order parameter
 - Impossible to discriminate between the different ground states by looking at a small region.
Topological order

- A 2D system with a degenerate ground state.
- Degeneracy depends on the topology.
- No local order parameter
 - Impossible to discriminate between the different ground states by looking at a small region.

$$\rho_1 \approx \rho_2, \quad \psi_1 \approx \psi_2$$
Anyons

- Point-like excitations that can move freely.
- Topological charge defined by equivalent class of shallow quantum circuits (conservation).
- Non-trivial braiding.
Point-like excitations that can move freely.
Topological charge defined by equivalent class of shallow quantum circuits (conservation).
Non-trivial braiding.
Anyons

- Point-like excitations that can move freely.
- Topological charge defined by equivalent class of shallow quantum circuits (conservation).
- Non-trivial braiding.
Anyons

- Point-like excitations that can move freely.
- Topological charge defined by equivalent class of shallow quantum circuits (conservation).
- Non-trivial braiding.
Anyons

- Point-like excitations that can move freely.
- Topological charge defined by equivalent class of shallow quantum circuits (conservation).
- Non-trivial braiding.
Anyons

- Point-like excitations that can move freely.
- Topological charge defined by equivalent class of shallow quantum circuits (conservation).
- Non-trivial braiding.
Anyons

- Point-like excitations that can move freely.
- Topological charge defined by equivalent class of shallow quantum circuits (conservation).
- Non-trivial braiding.

![Diagram of Anyons](image-url)
Anyons

- Point-like excitations that can move freely.
- Topological charge defined by equivalent class of shallow quantum circuits (conservation).
- Non-trivial braiding.
Anyons

- Point-like excitations that can move freely.
- Topological charge defined by equivalent class of shallow quantum circuits (conservation).
- Non-trivial braiding.
Suppose that there is a unique GS, ψ.

Since U_1 maps GS to GS, we have $U_1|\psi\rangle = e^{i\phi_1}|\psi\rangle$.

Since U_2 maps GS to GS, we have $U_2|\psi\rangle = e^{i\phi_2}|\psi\rangle$.

This implies $U_1 U_2 \Pi_{GS} = U_2 U_1 \Pi_{GS}$.

$U_1 U_2 \Pi_{GS} \neq U_2 U_1 \Pi_{GS}$ implies that the ground state is degenerate.

U_1 and U_2 are logical operators, i.e., operators which act inside this degenerate ground space.
Suppose that there is a unique GS, ψ.

Since U_1 maps GS to GS, we have $U_1|\psi\rangle = e^{i\phi_1}|\psi\rangle$.

Since U_2 maps GS to GS, we have $U_2|\psi\rangle = e^{i\phi_2}|\psi\rangle$.

This implies $U_1U_2\Pi_{GS} = U_2U_1\Pi_{GS}$.

$U_1U_2\Pi_{GS} \neq U_2U_1\Pi_{GS}$ implies that the ground state is degenerate.

U_1 and U_2 are logical operators, i.e., operators which act inside this degenerate ground space.
Suppose that there is a unique GS, ψ.

Since U_1 maps GS to GS, we have $U_1|\psi\rangle = e^{i\phi_1}|\psi\rangle$.

Since U_2 maps GS to GS, we have $U_2|\psi\rangle = e^{i\phi_2}|\psi\rangle$.

This implies $U_1U_2\Pi_{GS} = U_2U_1\Pi_{GS}$.

$U_1U_2\Pi_{GS} \neq U_2U_1\Pi_{GS}$ implies that the ground state is degenerate.

U_1 and U_2 are logical operators, i.e., operators which act inside this degenerate ground space.
Suppose that there is a unique GS, ψ.

Since U_1 maps GS to GS, we have $U_1|\psi\rangle = e^{i\phi_1}|\psi\rangle$.

Since U_2 maps GS to GS, we have $U_2|\psi\rangle = e^{i\phi_2}|\psi\rangle$.

This implies $U_1 U_2 \Pi_{GS} = U_2 U_1 \Pi_{GS}$.

$U_1 U_2 \Pi_{GS} \neq U_2 U_1 \Pi_{GS}$ implies that the ground state is degenerate.

U_1 and U_2 are logical operators, i.e., operators which act inside this degenerate ground space.
Suppose that there is a unique GS, ψ.

Since U_1 maps GS to GS, we have $U_1|\psi\rangle = e^{i\phi_1}|\psi\rangle$.

Since U_2 maps GS to GS, we have $U_2|\psi\rangle = e^{i\phi_2}|\psi\rangle$.

This implies $U_1 U_2 \Pi_{GS} = U_2 U_1 \Pi_{GS}$.

$U_1 U_2 \Pi_{GS} \neq U_2 U_1 \Pi_{GS}$ implies that the ground state is degenerate.

U_1 and U_2 are logical operators, i.e., operators which act inside this degenerate ground space.
Suppose that there is a unique GS, ψ. Since U_1 maps GS to GS, we have $U_1|\psi\rangle = e^{i\phi_1}|\psi\rangle$. Since U_2 maps GS to GS, we have $U_2|\psi\rangle = e^{i\phi_2}|\psi\rangle$. This implies $U_1 U_2 \Pi_{GS} = U_2 U_1 \Pi_{GS}$.

$U_1 U_2 \Pi_{GS} \neq U_2 U_1 \Pi_{GS}$ implies that the ground state is degenerate.

U_1 and U_2 are logical operators, i.e., operators which act inside this degenerate ground space.
Can I locally detect that the string operator U_1 has been applied?

- This would enable me to learn information about which GS the system is in.
- No because the particle can always avoid any topologically trivial region.

Deformability of the string operator implies no local order parameter.
Can I locally detect that the string operator U_1 has been applied?

- This would enable me to learn information about which GS the system is in.

No because the particle can always avoid any topologically trivial region.

Deformability of the string operator implies no local order parameter.
Can I locally detect that the string operator U_1 has been applied?

- This would enable me to learn information about which GS the system is in.
- No because the particle can always avoid any topologically trivial region.

Deformability of the string operator implies no local order parameter.
Can I locally detect that the string operator U_1 has been applied?
- This would enable me to learn information about which GS the system is in.
- No because the particle can always avoid any topologically trivial region.

Deformability of the string operator implies no local order parameter.
Ribbon operators

Topological data from string operators

- Ground space expectation of twist product $U_a \infty U_b \Pi_{GS} = \tilde{S}_{ab} \Pi_{GS}$ reveals (close cousin of) topological S-matrix element.
- Can be evaluated efficiently from a shallow circuit representation of $U_{a/b}$ or MPO representation.
- When $U_a U_b \Pi_{GS} = \eta U_b U_a \Pi_{GS}$ for some $\eta \neq 0, 1$, then S is non-trivial.
Ground space expectation of twist product $U_a \otimes U_b \prod_{GS} = \tilde{S}_{ab} \prod_{GS}$ reveals (close cousin of) topological S-matrix element.

Can be evaluated efficiently from a shallow circuit representation of $U_{a/b}$ or MPO representation.

When $U_a U_b \prod_{GS} = \eta U_b U_a \prod_{GS}$ for some $\eta \neq 0, 1$, then S is non-trivial.
Ground space expectation of twist product $U_a \otimes U_b \Pi_{GS} = \tilde{S}_{ab} \Pi_{GS}$ reveals (close cousin of) topological S-matrix element.

Can be evaluated efficiently from a shallow circuit representation of $U_{a/b}$ or MPO representation.

When $U_a U_b \Pi_{GS} = \eta U_b U_a \Pi_{GS}$ for some $\eta \neq 0, 1$, then S is non-trivial.
When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
MPO representation

\[M = \sum_{j_1,j_2,\ldots,j_n} X^{j_1} \otimes X^{j_1,j_2} \otimes \ldots \otimes X^{j_{n-1},j_n} \otimes X^{j_n} \]

When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
MPO representation

\[M = \sum_{j_1, j_2, \ldots, j_n} X^{j_1} \otimes X^{j_1, j_2} \otimes \ldots \otimes X^{j_{n-1}, j_n} \otimes X^{j_n} \]

When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
Ribbon operators

MPO representation

\[M = \sum_{j_1, j_2, \ldots, j_n} X^{j_1} \otimes X^{j_1, j_2} \otimes \ldots \otimes X^{j_{n-1}, j_n} \otimes X^{j_n} \]

When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
Ribbon operators

MPO representation

\[M = \sum_{j_1, j_2, \ldots, j_n} X^{j_1} \otimes X^{j_1, j_2} \otimes \ldots \otimes X^{j_{n-1}, j_n} \otimes X^{j_n} \]

When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
MPO representation

\[M = \sum_{j_1, j_2, \ldots, j_n} X^{j_1} \otimes X^{j_1, j_2} \otimes \ldots \otimes X^{j_{n-1}, j_n} \otimes X^{j_n} \]

When string operators arise from anyon propagation, it is an MPO.

For a Hamiltonian that is the sum of Local Commuting terms (LCP code), the string operators are MPOs (Haah & Preskill).
These exact MPO representations are special:

- RG fixed points, commuting cases, etc.

We expect MPO to remain a good approximation in general.

- Quasi-adiabatic evolution.
- Dressed by perturbation theory.
- MPO is fatten and bond dimension is increased.

We will search for string-like operators using an MPO ansatz.
MPO representation

- These exact MPO representations are special:
 - RG fixed points, commuting cases, etc.
- We expect MPO to remain a good approximation in general.
 - Quasi-adiabatic evolution.
 - Dressed by perturbation theory.
 - MPO is fatten and bond dimension is increased.
- We will search for string-like operators using an MPO ansatz.
These exact MPO representations are special:
 - RG fixed points, commuting cases, etc.

We expect MPO to remain a good approximation in general.
 - Quasi-adiabatic evolution.
 - Dressed by perturbation theory.
 - MPO is fatten and bond dimension is increased.

We will search for string-like operators using an MPO ansatz.
These exact MPO representations are special:
 - RG fixed points, commuting cases, etc.

We expect MPO to remain a good approximation in general.
 - Quasi-adiabatic evolution.
 - Dressed by perturbation theory.
 - MPO is fatten and bond dimension is increased.

We will search for string-like operators using an MPO ansatz.
These exact MPO representations are special:
- RG fixed points, commuting cases, etc.

We expect MPO to remain a good approximation in general.
- Quasi-adiabatic evolution.
- Dressed by perturbation theory.
- MPO is fatten and bond dimension is increased.

We will search for string-like operators using an MPO ansatz.
These exact MPO representations are special:
- RG fixed points, commuting cases, etc.

We expect MPO to remain a good approximation in general.
- Quasi-adiabatic evolution.
- Dressed by perturbation theory.
- MPO is fatten and bond dimension is increased.

We will search for string-like operators using an MPO ansatz.
These exact MPO representations are special:
- RG fixed points, commuting cases, etc.

We expect MPO to remain a good approximation in general.
- Quasi-adiabatic evolution.
- Dressed by perturbation theory.
- MPO is fatten and bond dimension is increased.

We will search for string-like operators using an MPO ansatz.
Outline

1. Introduction
2. Ribbon operators
3. Optimization problem
4. Numerical results
5. Discussion & Conclusion
Logical string-like operators should ...

- Be supported on a finite-width region R.
- Preserve the ground state: $[U_a^R, H] \Pi_{GS} = 0$
- Reveal non-trivial topological data $U_a^R U_b^{R'} \Pi_{GS} = \eta U_b^{R'} U_a^R \Pi_{GS}$.
- Be deformable, i.e. changing the location of R should not affect the above.

Objective function:

$$C(U_a, U_b, \eta) = \sum_{R \text{ crosses } R'} \| [H, U_a^R] \Pi_{GS} \|^2 + \| [H, U_b^{R'}] \Pi_{GS} \|^2 + \lambda \| U_a^R U_b^{R'} \Pi_{GS} - \eta U_b^{R'} U_a^R \Pi_{GS} \|^2$$

Main assumption:

$$C(U_a, U_b, \eta) = \sum_{R \text{ crosses } R'} \| [H, U_a^R] \|^2 + \| [H, U_b^{R'}] \|^2 + \lambda \| U_a^R U_b^{R'} - \eta U_b^{R'} U_a^R \|^2$$
Optimization problem

Objective function

Logical string-like operators should...

- Be supported on a finite-width region R.
- Preserve the ground state: $[U^R_a, H] \Pi_{GS} = 0$
- Reveal non-trivial topological data $U^R_a U^R_b \Pi_{GS} = \eta U^R_b U^R_a \Pi_{GS}$.
- Be deformable, i.e. changing the location of R should not affect the above.

Objective function: $C(U_a, U_b, \eta) =$

$$
\sum_{R \text{ crosses } R'} \|[H, U^R_a] \Pi_{GS}\|^2 + \|[H, U^R_b] \Pi_{GS}\|^2 + \lambda \|[U^R_a U^R_b \Pi_{GS} - \eta U^R_b U^R_a \Pi_{GS}]\|^2
$$

Main assumption: $C(U_a, U_b, \eta) =$

$$
\sum_{R \text{ crosses } R'} \|[H, U^R_a]\|^2 + \|[H, U^R_b]\|^2 + \lambda \|[U^R_a U^R_b - \eta U^R_b U^R_a]\|^2
$$
Objective function

Logical string-like operators should ...

- Be supported on a finite-width region R.
- Preserve the ground state: $[U_a^R, H] \Pi_{GS} = 0$
- Reveal non-trivial topological data $U_a^R U_b^{R'} \Pi_{GS} = \eta U_b^{R'} U_a^R \Pi_{GS}$.
- Be deformable, i.e. changing the location of R should not affect the above.

Objective function: $C(U_a, U_b, \eta) =$

$$\sum_{R \text{ crosses } R'} \| [H, U_a^R] \Pi_{GS} \|^2 + \| [H, U_b^{R'}] \Pi_{GS} \|^2 + \lambda \| U_a^R U_b^{R'} \Pi_{GS} - \eta U_b^{R'} U_a^R \Pi_{GS} \|^2$$

Main assumption: $C(U_a, U_b, \eta) =$

$$\sum_{R \text{ crosses } R'} \| [H, U_a^R] \|^2 + \| [H, U_b^{R'}] \|^2 + \lambda \| U_a^R U_b^{R'} - \eta U_b^{R'} U_a^R \|^2$$
Optimization problem

Objective function

Logical string-like operators should ...
- Be supported on a finite-width region R.
- Preserve the ground state: $[U_a^R, H] \prod_{GS} = 0$
- Reveal non-trivial topological data $U_a^R U_b^R \prod_{GS} = \eta U_b^R U_a^R \prod_{GS}$.
- Be deformable, i.e. changing the location of R should not affect the above.

Objective function: $C(U_a, U_b, \eta) =$

$$
\sum_{R \text{ crosses } R'} \| [H, U_a^R] \prod_{GS} \|^2 + \| [H, U_b^R] \prod_{GS} \|^2 + \lambda \| U_a^R U_b^R \prod_{GS} - \eta U_b^R U_a^R \prod_{GS} \|^2
$$

Main assumption: $C(U_a, U_b, \eta) =$

$$
\sum_{R \text{ crosses } R'} \| [H, U_a^R] \|^2 + \| [H, U_b^R] \|^2 + \lambda \| U_a^R U_b^R - \eta U_b^R U_a^R \|^2
$$
Objective function

Logical string-like operators should ...

- Be supported on a finite-width region R.
- Preserve the ground state: $[U_a^R, H] \Pi_{GS} = 0$
- Reveal non-trivial topological data $U_a^R U_b^{R'} \Pi_{GS} = \eta U_b^{R'} U_a^R \Pi_{GS}$.
- Be deformable, i.e. changing the location of R should not affect the above.

Objective function: $C(U_a, U_b, \eta) =$

$$
\sum_{R \text{ crosses } R'} \|[H, U_a^R] \Pi_{GS}\|^2 + \|[H, U_b^{R'}] \Pi_{GS}\|^2 + \lambda \|U_a^R U_b^{R'} \Pi_{GS} - \eta U_b^{R'} U_a^R \Pi_{GS}\|^2
$$

Main assumption: $C(U_a, U_b, \eta) =$

$$
\sum_{R \text{ crosses } R'} \|[H, U_a^R]\|^2 + \|[H, U_b^{R'}]\|^2 + \lambda \|U_a^R U_b^{R'} - \eta U_b^{R'} U_a^R\|^2
$$
Optimization problem

Objective function

Logical string-like operators should ...

- Be supported on a finite-width region \(R \).
- Preserve the ground state: \([U^R_a, H] \Pi_{GS} = 0 \).
- Reveal non-trivial topological data \(U^R_a U^R_b \Pi_{GS} = \eta U^R_b U^R_a \Pi_{GS} \).
- Be deformable, i.e. changing the location of \(R \) should not affect the above.

Objective function: \(C(U_a, U_b, \eta) = \)

\[
\sum_{R \text{ crosses } R'} \|[H, U^R_a] \Pi_{GS}\|^2 + \|[H, U^R_b] \Pi_{GS}\|^2 + \lambda \|U^R_a U^R_b \Pi_{GS} - \eta U^R_b U^R_a \Pi_{GS}\|^2
\]

Main assumption: \(C(U_a, U_b, \eta) = \)

\[
\sum_{R \text{ crosses } R'} \|[H, U^R_a]\|^2 + \|[H, U^R_b]\|^2 + \lambda \|U^R_a U^R_b - \eta U^R_b U^R_a\|^2
\]
Optimization problem

Numerical approach

- **Vectorize matrices:**
 - \(M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle \).
 - \([H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle\)

- Given \(U^R_b \), topological constraint \(\| U^R_a U^R_b − \eta U^R_b U^R_a \| \) is local:
 - \(\langle U^R_a U^R_b | \tilde{U}^R_{a R^R} | U^R_a \rangle \) for some operator \(\tilde{U}^R_{b R^R} \) supported on \(R \cap R' \) (point).

- When \(H \) is the sum of local terms, Hamiltonian penalty \(\|[H, U^R_a]\|^2 \) becomes an MPO cost function:
 - \(\langle U^R_a | \tilde{H}_R | U^R_a \rangle \) for some MPO \(\tilde{H}_R \) supported on \(R \).

- For fixed \(U^R_b \), objective function is an MPO \(\langle U^R_a | \tilde{O} | U^a \rangle \).
 - Can be solved using DMRG.

- To solve for \(U_a \) and \(U_b \), alternate between two independent optimizations.
Vectorize matrices:

- \(M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle. \)
- \([H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle\)

Given \(U_b^{R'} \), topological constraint \(\| U_a^R U_b^{R'} - \eta U_b^{R'} U_a^R \| \) is local:

- \(\langle U_a^R | \tilde{U}_b^{R \cap R'} | U_a^R \rangle \) for some operator \(\tilde{U}_b^{R \cap R'} \) supported on \(R \cap R' \) (point).

When \(H \) is the sum of local terms, Hamiltonian penalty \(\|[H, U_a^R]\|^2 \) becomes an MPO cost function:

- \(\langle U_a^R | \tilde{H}_R | U_a^R \rangle \) for some MPO \(\tilde{H}_R \) supported on \(R \).

For fixed \(U_b^{R'} \), objective function is an MPO \(\langle U_a^R | \tilde{O} | U_a \rangle \).

Can be solved using DMRG.

To solve for \(U_a \) and \(U_b \), alternate between two independent optimizations.
Numerical approach

- **Vectorize matrices:**
 - $M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle$.
 - $[H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle$

- Given $U_b^{R'}$, topological constraint $\|U_a^R U_b^{R'} - \eta U_b^{R'} U_a^R\|$ is local:
 - $\langle U_a^R \mid \tilde{U}_b^{R \cap R'} \mid U_a^R \rangle$ for some operator $\tilde{U}_b^{R \cap R'}$ supported on $R \cap R'$ (point).

- When H is the sum of local terms, Hamiltonian penalty $\|[H, U_a^R]\|^2$ becomes an MPO cost function:
 - $\langle U_a^R \mid \tilde{H}_R \mid U_a^R \rangle$ for some MPO \tilde{H}_R supported on R.

- For fixed $U_b^{R'}$, objective function is an MPO $\langle U_a^R \mid \tilde{O} \mid U_a \rangle$.
 - Can be solved using DMRG.

- To solve for U_a and U_b, alternate between two independent optimizations.
Numerical approach

- Vectorize matrices:
 - \(M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle \).
 - \([H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle\)

- Given \(U^R_b \), topological constraint \(|U^R_a U^R_b - \eta U^R_b U^R_a|\) is local:
 - \(\langle U^R_a | \tilde{U}^R_{b R \cap R'} | U^R_a \rangle \) for some operator \(\tilde{U}^R_{b R \cap R'} \) supported on \(R \cap R' \) (point).

- When \(H \) is the sum of local terms, Hamiltonian penalty \(||[H, U^R_a]|^2\) becomes an MPO cost function:
 - \(\langle U^R_a | \tilde{H}_R | U^R_a \rangle \) for some MPO \(\tilde{H}_R \) supported on \(R \).

- For fixed \(U^R_b \), objective function is an MPO \(\langle U^R_a | \tilde{O} | U_a \rangle \).
 - Can be solved using DMRG.

- To solve for \(U_a \) and \(U_b \), alternate between two independent optimizations.
Vectorize matrices:
- \(M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle. \)
- \([H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle \)

Given \(U_b^{R'} \), topological constraint \(\| U_a^R U_b^{R'} - \eta U_b^{R'} U_a^R \| \) is local:
- \(\langle U_a^R | \tilde{U}_b^{R \cap R'} | U_a^R \rangle \) for some operator \(\tilde{U}_b^{R \cap R'} \) supported on \(R \cap R' \) (point).

When \(H \) is the sum of local terms, Hamiltonian penalty \(\|[H, U_a^R]\|^2 \) becomes an MPO cost function:
- \(\langle U_a^R | \tilde{H}_R | U_a^R \rangle \) for some MPO \(\tilde{H}_R \) supported on \(R \).

For fixed \(U_b^{R'} \), objective function is an MPO \(\langle U_a^R | \tilde{O} | U_a \rangle \).
- Can be solved using DMRG.

To solve for \(U_a \) and \(U_b \), alternate between two independent optimizations.
Numerical approach

- Vectorize matrices:
 \[M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle. \]
 \[[H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle \]

- Given \(U_b^{R'} \), topological constraint \(\| U_a^R U_b^{R'} - \eta U_b^{R'} U_a^R \| \) is local:
 \[\langle U_a^R | \tilde{U}_b^{R \cap R'} | U_a^R \rangle \]
 for some operator \(\tilde{U}_b^{R \cap R'} \) supported on \(R \cap R' \) (point).

- When \(H \) is the sum of local terms, Hamiltonian penalty \(\|[H, U_a^R]\|^2 \) becomes an MPO cost function:
 \[\langle U_a^R | \tilde{H}_R | U_a^R \rangle \]
 for some MPO \(\tilde{H}_R \) supported on \(R \).

- For fixed \(U_b^{R'} \), objective function is an MPO \(\langle U_a^R | \tilde{O} | U_a \rangle \).
 - Can be solved using DMRG.

- To solve for \(U_a \) and \(U_b \), alternate between two independent optimizations.
Optimization problem

Numerical approach

- Vectorize matrices:
 - \(M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle. \)
 - \([H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle\)

- Given \(U^{R'}_b \), topological constraint \(\| U^{R}_{a} U^{R'}_b - \eta U^{R'}_b U^{R}_{a} \| \) is local:
 - \(\langle U^{R}_{a} | \tilde{U}^{R \cap R'}_b | U^{R}_{a} \rangle \) for some operator \(\tilde{U}^{R \cap R'}_b \) supported on \(R \cap R' \) (point).

- When \(H \) is the sum of local terms, Hamiltonian penalty \(\|[H, U^{R}_{a}]\|^2 \) becomes an MPO cost function:
 - \(\langle U^{R}_{a} | \tilde{H}^{R}_{R} | U^{R}_{a} \rangle \) for some MPO \(\tilde{H}^{R}_{R} \) supported on \(R \).

- For fixed \(U^{R'}_b \), objective function is an MPO \(\langle U^{R}_{a} | \tilde{O} | U_{a} \rangle \).
 - Can be solved using DMRG.

- To solve for \(U_{a} \) and \(U_{b} \), alternate between two independent optimizations.
Numerical approach

- Vectorize matrices:
 - $M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle$.
 - $[H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle$

- Given U_b^R, topological constraint $\| U_a^R U_b^R - \eta U_b^R U_a^R \|$ is local:
 - $\langle U_a^R | \tilde{U}_b^{R \cap R'} | U_a^R \rangle$ for some operator $\tilde{U}_b^{R \cap R'}$ supported on $R \cap R'$ (point).

- When H is the sum of local terms, Hamiltonian penalty $\|[H, U_a^R]\|^2$ becomes an MPO cost function:
 - $\langle U_a^R | \tilde{H}_R | U_a^R \rangle$ for some MPO \tilde{H}_R supported on R.

- For fixed U_b^R, objective function is an MPO $\langle U_a^R | \tilde{O} | U_a \rangle$.
 - Can be solved using DMRG.

- To solve for U_a and U_b, alternate between two independent optimizations.
Optimization problem

Numerical approach

- Vectorize matrices:
 \[M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle. \]
 \[[H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle \]

- Given \(U^R_b \), topological constraint \(\|U^R_a U^R_b - \eta U^R_b U^R_a\| \) is local:
 \[\langle U^R_a | \tilde{U}^{R \cap R'}_b | U^R_a \rangle \text{ for some operator } \tilde{U}^{R \cap R'}_b \text{ supported on } R \cap R'(\text{point}). \]

- When \(H \) is the sum of local terms, Hamiltonian penalty \(\|[H, U^R_a]\|_2 \) becomes an MPO cost function:
 \[\langle U^R_a | \tilde{H}_R | U^R_a \rangle \text{ for some MPO } \tilde{H}_R \text{ supported on } R. \]

- For fixed \(U^R_b \), objective function is an MPO \(\langle U^R_a | \tilde{O} | U_a \rangle. \)
 - Can be solved using DMRG.

To solve for \(U_a \) and \(U_b \), alternate between two independent optimizations.
Numerical approach

- Vectorize matrices:
 - $M = |\phi\rangle\langle\psi| \rightarrow |M\rangle = |\phi\rangle \otimes |\psi\rangle$.
 - $[H, M] \rightarrow (H \otimes I - I \otimes H)|M\rangle$

- Given $U_b^{R'}$, topological constraint $\|U_a^R U_b^{R'} - \eta U_b^{R'} U_a^R\|$ is local:
 - $\langle U_a^R | \tilde{U}_b^{R \cap R'} | U_a^R \rangle$ for some operator $\tilde{U}_b^{R \cap R'}$ supported on $R \cap R'$ (point).

- When H is the sum of local terms, Hamiltonian penalty $\|[H, U_a^R]\|^2$ becomes an MPO cost function:
 - $\langle U_a^R | \tilde{H}_R | U_a^R \rangle$ for some MPO \tilde{H}_R supported on R.

- For fixed $U_b^{R'}$, objective function is an MPO $\langle U_a^R | \tilde{O} | U_a \rangle$.
 - Can be solved using DMRG.

- To solve for U_a and U_b, alternate between two independent optimizations.
Outline

1. Introduction
2. Ribbon operators
3. Optimization problem
4. Numerical results
5. Discussion & Conclusion
Toric-Ising

\[H = J \cdot \text{Toric} - \frac{\hbar}{2} \sum_j j(X_j + X_j^\dagger) - \frac{\lambda}{4} \sum_{\langle j,k \rangle} (Z_j + Z_j^\dagger)(Z_k + Z_k^\dagger) \]

\[-\log_{10} C(R; e^{i\phi}) \]

\[\mathbb{Z}_5, \{J, h, \lambda\} = \{1, 0, 0\}, \chi = 5, w = 1 \]
Toric-Ising

\[H = J \cdot \text{Toric} - \frac{h}{2} \sum j(X_j + X_j^\dagger) - \frac{\lambda}{4} \sum_{\langle j,k \rangle} (Z_j + Z_j^\dagger)(Z_k + Z_k^\dagger) \]

\[\mathbb{Z}_2, \{ J, h, \lambda \} = \{ 1, 0.05, 0 \}, \chi = 5, w = 2 \]
Toric-Ising

\[
H = J \cdot \text{Toric} - \frac{h}{2} \sum_j j(X_j + X_j^\dagger) - \frac{\lambda}{4} \sum_{\langle j,k \rangle} (Z_j + Z_j^\dagger)(Z_k + Z_k^\dagger)
\]

Alternating minimization

\[
\mathbb{Z}_3, \{J, h, \lambda\} = \{1, 0.05, 0\}, \chi = 1, w = 1
\]
$H = -J_x \sum_{j,k \in x\text{-link}} X_j X_k - J_y \sum_{j,k \in y\text{-link}} Y_j Y_k - J_z \sum_{j,k \in z\text{-link}} Z_j Z_k$

\mathbb{Z}_2 phase for $0 < |J_x| + |J_y| < J_z$.
Honeycomb

\[H = -J_x \sum_{j,k \in \text{x-link}} X_j X_k - J_y \sum_{j,k \in \text{y-link}} Y_j Y_k - J_z \sum_{j,k \in \text{z-link}} Z_j Z_k \]

\(\mathbb{Z}_2 \) phase for \(0 < |J_x| + |J_y| < J_z \).

\(\{J_x, J_y, J_z\} = \{0.1, 0.1, 1\}, \chi = 5 \)
Honeycomb

\[H = -J_x \sum_{j,k \in \text{x-link}} X_j X_k - J_y \sum_{j,k \in \text{y-link}} Y_j Y_k - J_z \sum_{j,k \in \text{z-link}} Z_j Z_k \]

\(\mathbb{Z}_2 \) phase for \(0 < |J_x| + |J_y| < J_z \).

\[\{J_x, J_y, J_z\} = \{0.1, 0.1, 1\}, \chi = 5 \]
Honeycomb

\[
H = -J_X \sum_{j,k \in x-\text{link}} X_j X_k - J_Y \sum_{j,k \in y-\text{link}} Y_j Y_k - J_Z \sum_{j,k \in z-\text{link}} Z_j Z_k
\]

\mathbb{Z}_2 phase for $0 < |J_X| + |J_Y| < J_Z$.

\[\{J_X, J_Y, J_Z\} = \{0.1, 0.1, 1\}, \ w = 2\]
Honeycomb

\[H = -J_x \sum_{j,k \in x \text{--link}} X_j X_k - J_y \sum_{j,k \in y \text{--link}} Y_j Y_k - J_z \sum_{j,k \in z \text{--link}} Z_j Z_k \]

\mathbb{Z}_2 phase for $0 < |J_x| + |J_y| < J_z$.

\[\{J_x, J_y, J_z\} = \{J, J, 1\}, \chi = 4, w = 3 \]
Numerical results

Compass model – Not topologically ordered

\[H = -J_x \sum_{j,k \in \text{x-link}} X_j X_k - J_z \sum_{j,k \in \text{z-link}} Z_j Z_k \]

\[J_x = J_z, \; \chi = 5 \]
Numerical results

Compass model – Not topologically ordered

\[H = -J_x \sum_{j,k \in x-\text{link}} X_j X_k - J_z \sum_{j,k \in z-\text{link}} Z_j Z_k \]

Supports vertical and horizontal logical operators,
Compass model – Not topologically ordered

\[H = -J_x \sum_{j,k \in \text{x-link}} X_j X_k - J_z \sum_{j,k \in \text{z-link}} Z_j Z_k \]

\[J_x = J_z, \chi = 5 \]
Toric-Ising

\[H = J \cdot \text{Toric} - \frac{h}{2} \sum j(X_j + X_j^\dagger) - \frac{\lambda}{4} \sum_{\langle j,k \rangle} (Z_j + Z_j^\dagger)(Z_k + Z_k^\dagger) \]

\[\mathbb{Z}_2, \{J, h, \lambda\} = \{1, 0, 0\}, \chi = 5 \]
Outline

1. Introduction
2. Ribbon operators
3. Optimization problem
4. Numerical results
5. Discussion & Conclusion
Why does it work?

- $\Pi_{GS} U^R_a \Pi_{GS} \Rightarrow U^R_a$ enforce commutation relation on entire spectrum.
- $\Pi_{GS} U^R_a \Pi_{GS} \approx \exp\{-H/\Delta\} U^R_a \exp\{-H/\Delta\}$.
- For a local Hamiltonian, $\exp\{-H/\Delta\}$ maps a ribbon MPO to a (fatter and heavier) ribbon MPO.

If the commutations relations can only be achieved on the low energy sector, given enough width and bond dimension, the minimization problem should output the projected ribbon operator $\Pi_{GS} U^R_a \Pi_{GS}$.
Why does it work?

- $\Pi_{GS} U^R_\alpha \Pi_{GS} \Rightarrow U^R_\alpha$ enforce commutation relation on entire spectrum.
- $\Pi_{GS} U^R_\alpha \Pi_{GS} \approx \exp\{-H/\Delta\} U^R_\alpha \exp\{-H/\Delta\}$.
- For a local Hamiltonian, $\exp\{-H/\Delta\}$ maps a ribbon MPO to a (fatter and heavier) ribbon MPO.

If the commutations relations can only be achieved on the low energy sector, given enough width and bond dimension, the minimization problem should output the projected ribbon operator $\Pi_{GS} U^R_\alpha \Pi_{GS}$.
Why does it work?

- $\Pi_{GS} U_a^R \Pi_{GS} \Rightarrow U_a^R$ enforce commutation relation on entire spectrum.
- $\Pi_{GS} U_a^R \Pi_{GS} \approx \exp\{-H/\Delta\} U_a^R \exp\{-H/\Delta\}$.
- For a local Hamiltonian, $\exp\{-H/\Delta\}$ maps a ribbon MPO to a (fatter and heavier) ribbon MPO.

If the commutations relations can only be achieved on the low energy sector, given enough width and bond dimension, the minimization problem should output the projected ribbon operator $\Pi_{GS} U_a^R \Pi_{GS}$.
Why does it work?

- $\Pi_{GS} U_a^R \Pi_{GS} \Rightarrow U_a^R$ enforce commutation relation on entire spectrum.
- $\Pi_{GS} U_a^R \Pi_{GS} \approx \exp\{-H/\Delta\} U_a^R \exp\{-H/\Delta\}$.
- For a local Hamiltonian, $\exp\{-H/\Delta\}$ maps a ribbon MPO to a (fatter and heavier) ribbon MPO.

If the commutations relations can only be achieved on the low energy sector, given enough width and bond dimension, the minimization problem should output the projected ribbon operator $\Pi_{GS} U_a^R \Pi_{GS}$.
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?
- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?
- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?

- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.

- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?

- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.

- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?

- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.

- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?
- It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.
- Numerically equivalent to 1D DMRG.
- Why does it work at all?
 - Why can we replace ground-state expectations by operator equalities?
 - Does it rely on the structure of excited states being weakly-interacting Anyons?
 - For gapped models, the projected ribbon operator should also be a ribbon MPO.
- Our numerical benchmarks were for Abelian anyons.
 - Can substitute the twist product by group commutator (simpler).
 - Any reason this should fail when optimizing the twist product in non-Abelian models?
- Can we extract other topological data from these string operators?
- How does our approach compare to an adiabatic evolution starting from the fixed point?
- It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.
- Numerically equivalent to 1D DMRG.
- Why does it work at all?
 - Why can we replace ground-state expectations by operator equalities?
 - Does it rely on the structure of excited states being weakly-interacting Anyons?
 - For gapped models, the projected ribbon operator should also be a ribbon MPO.
- Our numerical benchmarks were for Abelian anyons.
 - Can substitute the twist product by group commutator (simpler).
 - Any reason this should fail when optimizing the twist product in non-Abelian models?
- Can we extract other topological data from these string operators?
- How does our approach compare to an adiabatic evolution starting from the fixed point?
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?
- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?
- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?

- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.

- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?
It is possible heuristically to learn topological data from a Hamiltonian without having access to the ground state.

Numerically equivalent to 1D DMRG.

Why does it work at all?
- Why can we replace ground-state expectations by operator equalities?
- Does it rely on the structure of excited states being weakly-interacting Anyons?
- For gapped models, the projected ribbon operator should also be a ribbon MPO.

Our numerical benchmarks were for Abelian anyons.
- Can substitute the twist product by group commutator (simpler).
- Any reason this should fail when optimizing the twist product in non-Abelian models?

Can we extract other topological data from these string operators?

How does our approach compare to an adiabatic evolution starting from the fixed point?