Quantum computing with a reasonable overhead Simplified quantum compiling with complex gate distillation

Guillaume Duclos-Cianci & David Poulin

Équipe de recherche sur la physique de l'information quantique Département de Physique Université de Sherbrooke

Sydney Quantum Information Theory Workshop Coogee, January 2014

Outline

Motivation

- 2 Fault-tolerant techniques
- 3 Compiling complex gates
- 4 High-level state distillation

5 Results

Outline

Motivation

- 2 Fault-tolerant techniques
- 3 Compiling complex gates
- 4 High-level state distillation
- 5 Results
- Outlook & Conclusion

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

$$\begin{split} \psi_t \rangle &= |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle) \\ \Rightarrow |E_t\rangle &= \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle \\ \Rightarrow |E_t| &\leq \epsilon + |E_{t-1}| \end{split}$$

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10⁶ qubits and has dept 10⁸.
- There are 10¹⁴ occasions to pick up errors

$$\begin{split} \psi_t \rangle &= |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle) \\ \Rightarrow |E_t\rangle &= \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle \\ \Rightarrow |E_t| &\leq \epsilon + |E_{t-1}| \end{split}$$

• The final error is proportional to the number of gates (identity). • Each gate requires accuracy $\ll 10^{-14}$.

Duclos-Cianci & Poulin (Sherbrooke)

Quantum Compiling & Distillation

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

$$\begin{aligned} |\psi_t\rangle &= |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle) \\ \Rightarrow |E_t\rangle &= \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle \\ \Rightarrow |E_t| &\leq \epsilon + |E_{t-1}| \end{aligned}$$

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10⁶ qubits and has dept 10⁸.
- There are 10¹⁴ occasions to pick up errors

$$|\psi_t\rangle = |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle)$$

$$\Rightarrow |E_t\rangle = \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle$$
$$\Rightarrow |E_t| \le \epsilon + |E_{t-1}|$$

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10⁶ qubits and has dept 10⁸.
- There are 10¹⁴ occasions to pick up errors

$$|\psi_t\rangle = |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle)$$

$$\Rightarrow |E_t\rangle = \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle$$
$$\Rightarrow |E_t| \le \epsilon + |E_{t-1}|$$

• Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.

Motivation

- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

$$|\psi_t\rangle = |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle)$$

$$\Rightarrow |E_t\rangle = \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle$$
$$\Rightarrow |E_t| \le \epsilon + |E_{t-1}|$$

• Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.

Motivation

- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

 $\begin{aligned} |\psi_t\rangle &= |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle) \\ \Rightarrow |E_t\rangle &= \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle \\ \Rightarrow |E_t| \le \epsilon + |E_{t-1}| \end{aligned}$

• Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.

Motivation

- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

$$\begin{split} \psi_t \rangle &= |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle) \\ \Rightarrow |E_t\rangle &= \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle \\ \Rightarrow |E_t| &\le \epsilon + |E_{t-1}| \end{split}$$

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

$$egin{aligned} \psi_t &> = |\phi^0_t
angle + |E_t
angle = (U_t + \epsilon V_t) (|\phi^0_{t-1}
angle + |E_{t-1}
angle) \ &\Rightarrow |E_t
angle = \epsilon V_t |\phi^0_{t-1}
angle + (U_t + \epsilon V_t) |E_{t-1}
angle \ &\Rightarrow |E_t| \leq \epsilon + |E_{t-1}| \end{aligned}$$

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

$$\begin{split} \psi_t \rangle &= |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle) \\ \Rightarrow |E_t\rangle &= \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle \\ \Rightarrow |E_t| &\le \epsilon + |E_{t-1}| \end{split}$$

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

$$\begin{aligned} |\psi_t\rangle &= |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle) \\ \Rightarrow |E_t\rangle &= \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle \\ \Rightarrow |E_t| &\le \epsilon + |E_{t-1}| \end{aligned}$$

- Along the *z* axis: just wait for $t = 0.23\pi\hbar/J$ seconds.
- Along the *x* axis: just Rabi pulse the qubit for $t = 0.23\pi\hbar/A$ seconds.
- General by Euler angle decomposition.

How about errors?

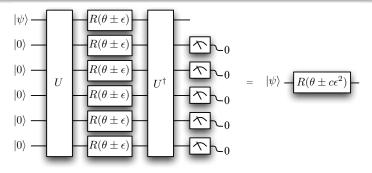
- Algorithm uses 10^6 qubits and has dept 10^8 .
- There are 10¹⁴ occasions to pick up errors

$$\begin{aligned} |\psi_t\rangle &= |\phi_t^0\rangle + |E_t\rangle = (U_t + \epsilon V_t)(|\phi_{t-1}^0\rangle + |E_{t-1}\rangle) \\ \Rightarrow |E_t\rangle &= \epsilon V_t |\phi_{t-1}^0\rangle + (U_t + \epsilon V_t)|E_{t-1}\rangle \\ \Rightarrow |E_t| &\le \epsilon + |E_{t-1}| \end{aligned}$$

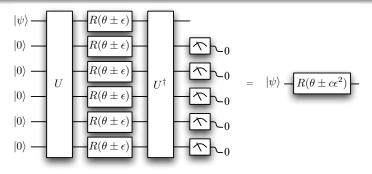
Outline

Motivation

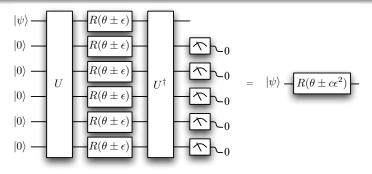
- Pault-tolerant techniques
 - 3 Compiling complex gates
- 4 High-level state distillation
- 5 Results
- Outlook & Conclusion



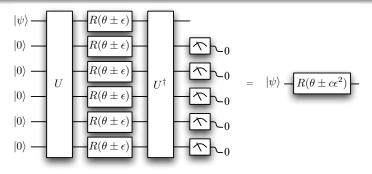
- This only works for very special angles θ .
- Error can be further suppressed by iterating (concatenation).
- We can realize the Clifford group this way: CNOT, H, $P = Z^{1/2}$.
- U itself is Clifford, so iterations don't introduce more errors.
- Not a universal gate set.
- Slightly more general setting admits T= Z^{1/4}, universal.



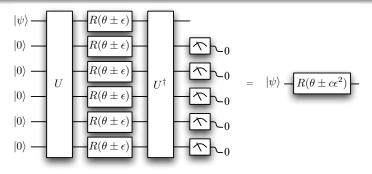
- This only works for very special angles θ .
- Error can be further suppressed by iterating (concatenation).
- We can realize the Clifford group this way: CNOT, H, P = Z^{1/2}.
- U itself is Clifford, so iterations don't introduce more errors.
- Not a universal gate set.
- Slightly more general setting admits T= Z^{1/4}, universal.



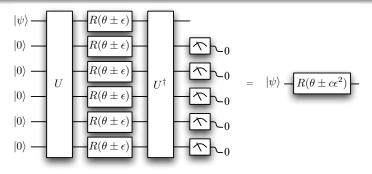
- This only works for very special angles θ .
- Error can be further suppressed by iterating (concatenation).
- We can realize the Clifford group this way: CNOT, H, P = Z^{1/2}.
- U itself is Clifford, so iterations don't introduce more errors.
- Not a universal gate set.
- Slightly more general setting admits T= Z^{1/4}, universal.



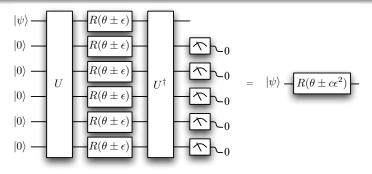
- This only works for very special angles θ .
- Error can be further suppressed by iterating (concatenation).
- We can realize the Clifford group this way: CNOT, H, $P = Z^{1/2}$.
- U itself is Clifford, so iterations don't introduce more errors.
- Not a universal gate set.
- Slightly more general setting admits $T = Z^{1/4}$, universal.



- This only works for very special angles θ .
- Error can be further suppressed by iterating (concatenation).
- We can realize the Clifford group this way: CNOT, H, P = $Z^{1/2}$.
- *U* itself is Clifford, so iterations don't introduce more errors.
- Not a universal gate set.
- Slightly more general setting admits $T = Z^{1/4}$, universal.



- This only works for very special angles θ .
- Error can be further suppressed by iterating (concatenation).
- We can realize the Clifford group this way: CNOT, H, P = $Z^{1/2}$.
- *U* itself is Clifford, so iterations don't introduce more errors.
- Not a universal gate set.
- Slightly more general setting admits $T = Z^{1/4}$, universal.



- This only works for very special angles θ .
- Error can be further suppressed by iterating (concatenation).
- We can realize the Clifford group this way: CNOT, H, P = $Z^{1/2}$.
- *U* itself is Clifford, so iterations don't introduce more errors.
- Not a universal gate set.
- Slightly more general setting admits T= Z^{1/4}, universal.

$$\begin{split} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle - \sigma_y \\ |Y_{\theta}\rangle &= \cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} |1\rangle - \sigma_y \end{split}$$

$$\cos\frac{\theta}{2}|0\rangle|\psi\rangle + \sin\frac{\theta}{2}|1\rangle\sigma_{y}|\psi\rangle$$
$$= \cos\frac{\theta}{2}\frac{|i\rangle + |-i\rangle}{\sqrt{2}}|\psi\rangle - i\sin\frac{\theta}{2}\frac{|i\rangle - |-i\rangle}{\sqrt{2}}\sigma_{y}|\psi\rangle$$

• Measure $|i\rangle$: $(\cos \frac{\theta}{2} - i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(-\theta) |\psi\rangle$ • Measure $|-i\rangle$: $(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(\theta) |\psi\rangle$

Can realize a rotation around y of angle $\pm \theta$ given state $|Y_{\theta}\rangle$ and Clifford operations.

$$\begin{split} |\psi\rangle &= \alpha|0\rangle + \beta|1\rangle - \sigma_y \\ |Y_{\theta}\rangle &= \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle - \gamma \\ \cos\frac{\theta}{2}|0\rangle|\psi\rangle + \sin\frac{\theta}{2}|1\rangle\sigma_y|\psi\rangle \\ &= \cos\frac{\theta}{2}\frac{|i\rangle + |-i\rangle}{\sqrt{2}}|\psi\rangle - i\sin\frac{\theta}{2}\frac{|i\rangle - |-i\rangle}{\sqrt{2}}\sigma_y|\psi\rangle \end{split}$$

• Measure $|i\rangle$: $(\cos \frac{\theta}{2} - i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(-\theta) |\psi\rangle$ • Measure $|-i\rangle$: $(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(\theta) |\psi\rangle$

Can realize a rotation around *y* of angle $\pm \theta$ given state $|Y_{\theta}\rangle$ and Clifford operations.

$$\begin{split} |\psi\rangle &= \alpha|0\rangle + \beta|1\rangle - \sigma_y \\ |Y_{\theta}\rangle &= \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle - \gamma \\ \cos\frac{\theta}{2}|0\rangle|\psi\rangle + \sin\frac{\theta}{2}|1\rangle\sigma_y|\psi\rangle \\ &= \cos\frac{\theta}{2}\frac{|i\rangle + |-i\rangle}{\sqrt{2}}|\psi\rangle - i\sin\frac{\theta}{2}\frac{|i\rangle - |-i\rangle}{\sqrt{2}}\sigma_y|\psi\rangle \end{split}$$

• Measure $|i\rangle$: $(\cos \frac{\theta}{2} - i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(-\theta) |\psi\rangle$ • Measure $|-i\rangle$: $(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(\theta) |\psi\rangle$

Can realize a rotation around y of angle $\pm \theta$ given state $|Y_{\theta}\rangle$ and Clifford operations.

• Measure $|-i\rangle$: $(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\sigma_v)|\psi\rangle = R_v(\theta)|\psi\rangle$

State injection

$$\begin{split} |\psi\rangle &= \alpha|0\rangle + \beta|1\rangle - \overbrace{\sigma_y} \\ |Y_{\theta}\rangle &= \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle - \overbrace{\nabla y} \\ \cos\frac{\theta}{2}|0\rangle|\psi\rangle + \sin\frac{\theta}{2}|1\rangle\sigma_y|\psi\rangle \\ &= \cos\frac{\theta}{2}\frac{|i\rangle + |-i\rangle}{\sqrt{2}}|\psi\rangle - i\sin\frac{\theta}{2}\frac{|i\rangle - |-i\rangle}{\sqrt{2}}\sigma_y|\psi\rangle \\ \bullet \text{ Measure } |i\rangle : \ (\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}\sigma_y)|\psi\rangle = R_y(-\theta)|\psi\rangle \end{split}$$

Can realize a rotation around y of angle $\pm \theta$ given state $|Y_{\theta}\rangle$ and Clifford operations.

$$\begin{split} |\psi\rangle &= \alpha|0\rangle + \beta|1\rangle - \sigma_y \\ |Y_{\theta}\rangle &= \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle - \gamma \\ \cos\frac{\theta}{2}|0\rangle|\psi\rangle + \sin\frac{\theta}{2}|1\rangle\sigma_y|\psi\rangle \\ &= \cos\frac{\theta}{2}\frac{|i\rangle + |-i\rangle}{\sqrt{2}}|\psi\rangle - i\sin\frac{\theta}{2}\frac{|i\rangle - |-i\rangle}{\sqrt{2}}\sigma_y|\psi\rangle \end{split}$$

• Measure $|i\rangle$: $(\cos \frac{\theta}{2} - i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(-\theta) |\psi\rangle$ • Measure $|-i\rangle$: $(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(\theta) |\psi\rangle$

Can realize a rotation around y of angle $\pm \theta$ given state $|Y_{\theta}\rangle$ and Clifford operations.

$$\begin{split} |\psi\rangle &= \alpha|0\rangle + \beta|1\rangle - \sigma_y \\ |Y_{\theta}\rangle &= \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle - \infty \end{split}$$
$$\cos\frac{\theta}{2}|0\rangle|\psi\rangle + \sin\frac{\theta}{2}|1\rangle\sigma_y|\psi\rangle \\ &= \cos\frac{\theta}{2}\frac{|i\rangle + |-i\rangle}{\sqrt{2}}|\psi\rangle - i\sin\frac{\theta}{2}\frac{|i\rangle - |-i\rangle}{\sqrt{2}}\sigma_y|\psi\rangle \end{split}$$

• Measure
$$|i\rangle$$
: $(\cos \frac{\theta}{2} - i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(-\theta) |\psi\rangle$
• Measure $|-i\rangle$: $(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(\theta) |\psi\rangle$

Can realize a rotation around *y* of angle $\pm \theta$ given state $|Y_{\theta}\rangle$ and Clifford operations.

$$\begin{split} |\psi\rangle &= \alpha|0\rangle + \beta|1\rangle - \sigma_y \\ |Y_{\theta}\rangle &= \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle - \gamma \\ \cos\frac{\theta}{2}|0\rangle|\psi\rangle + \sin\frac{\theta}{2}|1\rangle\sigma_y|\psi\rangle \\ &= \cos\frac{\theta}{2}\frac{|i\rangle + |-i\rangle}{\sqrt{2}}|\psi\rangle - i\sin\frac{\theta}{2}\frac{|i\rangle - |-i\rangle}{\sqrt{2}}\sigma_y|\psi\rangle \end{split}$$

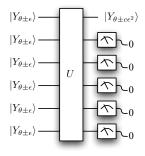
• Measure
$$|i\rangle$$
: $(\cos \frac{\theta}{2} - i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(-\theta) |\psi\rangle$
• Measure $|-i\rangle$: $(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \sigma_y) |\psi\rangle = R_y(\theta) |\psi\rangle$

Can realize a rotation around *y* of angle $\pm \theta$ given state $|Y_{\theta}\rangle$ and Clifford operations.

How to get accurate states $|Y_{\theta}\rangle$?

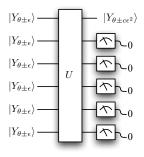
- *U* is Clifford.
- This only works for very special angles θ .
- With Clifford operations, all we need is $\theta = \pi/8$ to get T = Z^{1/4}, universal.

How to get accurate states $|Y_{\theta}\rangle$?



- U is Clifford.
- This only works for very special angles θ .
- With Clifford operations, all we need is $\theta = \pi/8$ to get T = Z^{1/4}, universal.

How to get accurate states $|Y_{\theta}\rangle$?

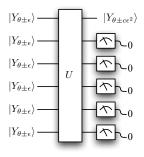


• U is Clifford.

- This only works for very special angles θ .
- With Clifford operations, all we need is $\theta = \pi/8$ to get T = Z^{1/4}, universal.

Duclos-Cianci & Poulin (Sherbrooke)

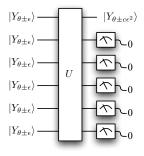
How to get accurate states $|Y_{\theta}\rangle$?



- U is Clifford.
- This only works for very special angles θ .
- With Clifford operations, all we need is θ = π/8 to get T = Z^{1/4}, universal.

Duclos-Cianci & Poulin (Sherbrooke)

How to get accurate states $|Y_{\theta}\rangle$?



- *U* is Clifford.
- This only works for very special angles θ .
- With Clifford operations, all we need is $\theta = \pi/8$ to get T = Z^{1/4}, universal.

Cost for physical noise rate 1%

Precision	# inputs	
10^{-3}	5	
10^{-5}	17	
10^{-6}	28	
10^{-8}	87	
10^{-10}	139	• This is the number of noisy $ Y_{\pi/8}\rangle$
10^{-12}	261	states needed to distill one
10^{-15}	436	high-accuracy $ Y_{\pi/8}\rangle$.
10^{-18}	697	
10^{-23}	1309	 It is assumed that Clifford operations
10^{-29}	2181	are noiseless.
10^{-38}	3632	
10^{-45}	6543	

Meier, Eastin, & Knill

Cost for physical noise rate 1%

	Precision	# inputs	
-	10^{-3}	5	
	10^{-5}	17	
	10^{-6}	28	
	10^{-8}	87	
	10^{-10}	139	• This is the number of noisy $ Y_{\pi/8}\rangle$
	10^{-12}	261	states needed to distill one
	10^{-15}	436	high-accuracy $ Y_{\pi/8}\rangle$.
	10^{-18}	697	
	10^{-23}	1309	 It is assumed that Clifford operation
	10^{-29}	2181	are noiseless.
	10^{-38}	3632	
	10^{-45}	6543	

Meier, Eastin, & Knill

Cost for physical noise rate 1%

Precision	# inputs	
10^{-3}	5	
10^{-5}	17	
10^{-6}	28	
10^{-8}	87	
10^{-10}	139	•
10^{-12}	261	:
10^{-15}	436	1
10^{-18}	697	
10^{-23}	1309	•
10^{-29}	2181	i
10^{-38}	3632	
10^{-45}	6543	

Meier, Eastin, & Knill

- This is the number of noisy $|Y_{\pi/8}\rangle$ states needed to distill one high-accuracy $|Y_{\pi/8}\rangle$.
- It is assumed that Clifford operations are noiseless.

Outline

Motivation

- 2 Fault-tolerant techniques
- 3 Compiling complex gates
 - 4 High-level state distillation
 - 5 Results
- Outlook & Conclusion

How to rotate a qubit by 0.23π ?

- Get a universal set of gates CNOT, H, $P = Z^{1/2}$, $T = Z^{1/4}$.
 - Because they are "transversal" in the code.
 - By distilling $|Y_{\pi/8}\rangle$.
- Compile: $R(0.23\pi) \approx HTHPTPTHTHPTPTPTHPTHPHTPHTPTH$
- Precision δ requires $\mathcal{O}(\log^c \frac{1}{\delta})$ gates (Solovay-Kitaev).
- Hidden constant in \mathcal{O} are huge.

How to rotate a qubit by 0.23π ?

- Get a universal set of gates CNOT, H, P = $Z^{1/2}$, T = $Z^{1/4}$.
 - Because they are "transversal" in the code.
 - By distilling $|Y_{\pi/8}\rangle$.
- Compile: $R(0.23\pi) \approx HTHPTPTHTHPTPTPTHPTHPHTPHTPTH$
- Precision δ requires $\mathcal{O}(\log^c \frac{1}{\delta})$ gates (Solovay-Kitaev).
- Hidden constant in \mathcal{O} are huge.

How to rotate a qubit by 0.23π ?

- Get a universal set of gates CNOT, H, $P = Z^{1/2}$, $T = Z^{1/4}$.
 - Because they are "transversal" in the code.
 - By distilling $|Y_{\pi/8}\rangle$.
- Compile: $R(0.23\pi) \approx HTHPTPTHTHPTPTPTHPTHPHTPHTPTH$
- Precision δ requires $\mathcal{O}(\log^c \frac{1}{\delta})$ gates (Solovay-Kitaev).

• Hidden constant in \mathcal{O} are huge.

How to rotate a qubit by 0.23π ?

- Get a universal set of gates CNOT, H, $P = Z^{1/2}$, $T = Z^{1/4}$.
 - Because they are "transversal" in the code.
 - By distilling $|Y_{\pi/8}\rangle$.
- Compile: $R(0.23\pi) \approx HTHPTPTHTHPTPTPTHPTHPHTPHTPTH$
- Precision δ requires $\mathcal{O}(\log^c \frac{1}{\delta})$ gates (Solovay-Kitaev).

• Hidden constant in \mathcal{O} are huge.

How to rotate a qubit by 0.23π ?

- Get a universal set of gates CNOT, H, $P = Z^{1/2}$, $T = Z^{1/4}$.
 - Because they are "transversal" in the code.
 - By distilling $|Y_{\pi/8}\rangle$.
- Compile: $R(0.23\pi) \approx HTHPTPTHTHPTPTPTHPTHPHTPHTPTH$
- Precision δ requires $\mathcal{O}(\log^c \frac{1}{\delta})$ gates (Solovay-Kitaev).

• Hidden constant in \mathcal{O} are huge.

How to rotate a qubit by 0.23π ?

- Get a universal set of gates CNOT, H, $P = Z^{1/2}$, $T = Z^{1/4}$.
 - Because they are "transversal" in the code.
 - By distilling $|Y_{\pi/8}\rangle$.
- Compile: $R(0.23\pi) \approx HTHPTPTHTHPTPTPTHPTHPHTPHTPTH$
- Precision δ requires $\mathcal{O}(\log^c \frac{1}{\delta})$ gates (Solovay-Kitaev).
- Hidden constant in \mathcal{O} are huge.

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates	
10^{-3}	5	10^{-3}	28	
10^{-5}	17	10^{-5}	132	Need precision
10^{-6}	28	10^{-7}	670	10^{-14}
10^{-8}	87	10^{-10}	3,284	10
10^{-10}	139	10^{-15}	14,312	Compiled logical
10^{-12}	261	10^{-22}	74,162	gates will use 104
10^{-15}	436	10^{-33}	347,388	Tgates
10^{-18}	697	10^{-51}	1,692,692	• Each of these T
10^{-23}	1309			
10^{-29}	2181			gates must have
10^{-38}	3632			accuracy
10^{-45}	6543			$\frac{10^{-14}}{10^4} = 10^{-18}$
	1	Kliuchnikov, Ma	aslov, &	

Meier, Eastin, & Knill

Mosca

Overhead = $14,312 \times 697 = 9,975,464$ Clifford operation cost not accounted.

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates	
10^{-3}	5	10^{-3}	28	
10^{-5}	17	10^{-5}	132	Need precision
10^{-6}	28	10^{-7}	670	10^{-14}
10^{-8}	87	10^{-10}	3,284	10
10^{-10}	139	10^{-15}	14,312	Compiled logical
10^{-12}	261	10^{-22}	74,162	gates will use 104
10^{-15}	436	10^{-33}	347,388	Tgates
10^{-18}	697	10^{-51}	1,692,692	• Each of these T
10^{-23}	1309		I	
10^{-29}	2181			gates must have
10^{-38}	3632			accuracy
10^{-45}	6543			$\frac{10^{-14}}{10^4} = 10^{-18}$
		Kliuchnikov, Ma	aslov, &	
Meier, Eastin, & Knill		Mosca		

 $\begin{array}{l} \text{Overhead} = 14,312\times 697 = 9,975,46\\ \text{Clifford operation cost not accounted} \end{array}$

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates	
10^{-3}	5	10^{-3}	28	
10^{-5}	17	10^{-5}	132	
10^{-6}	28	10^{-7}	670	
10^{-8}	87	10^{-10}	3,284	
10^{-10}	139	10^{-15}	14,312	
10^{-12}	261	10^{-22}	74,162	
10^{-15}	436	10^{-33}	347,388	
10^{-18}	697	10^{-51}	1,692,692	
10^{-23}	1309			
10^{-29}	2181			
10^{-38}	3632			
10^{-45}	6543			
1		Kliuchnikov, Ma	aslov, &	
Meier, Eastin, & Knill		Mosca		

• Need precision 10^{-14}

- Compiled logical gates will use 10⁴ T gates
- Each of these T gates must have accuracy $\frac{10^{-14}}{10^4} = 10^{-18}$

Overhead = $14,312 \times 697 = 9,975,464$ Clifford operation cost not accounted.

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates	
10^{-3}	5	10^{-3}	28	
10^{-5}	17	10^{-5}	132	
10^{-6}	28	10^{-7}	670	
10^{-8}	87	10^{-10}	3,284	
10^{-10}	139	10^{-15}	14,312	(
10^{-12}	261	10^{-22}	74,162	
10^{-15}	436	10^{-33}	347,388	
10^{-18}	697	10^{-51}	1,692,692	
10^{-23}	1309			
10^{-29}	2181			
10^{-38}	3632			
10^{-45}	6543			
Ι		Kliuchnikov, Maslov, &		
Meier, Eastin, & Knill		Mosca		

• Need precision 10^{-14}

- Compiled logical gates will use 10⁴ T gates
- Each of these T gates must have accuracy $\frac{10^{-14}}{10^4} = 10^{-18}$

Overhead = $14,312 \times 697 = 9,975,464$ Clifford operation cost not accounted.

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates	
10^{-3}	5	10^{-3}	28	
10^{-5}	17	10^{-5}	132	Need precision
10^{-6}	28	10^{-7}	670	10^{-14}
10^{-8}	87	10^{-10}	3,284	
10^{-10}	139	10^{-15}	14,312	Compiled logical
10^{-12}	261	10^{-22}	74,162	gates will use 104
10^{-15}	436	10^{-33}	347,388	Tgates
10^{-18}	697	10^{-51}	1,692,692	• Each of these T
10^{-23}	1309		1	
10^{-29}	2181			gates must have
10^{-38}	3632			accuracy
10^{-45}	6543			$\frac{10^{-14}}{10^4} = 10^{-18}$
	1	Kliuchnikov, Ma	aslov, &	
Meier, Eastin, & Knill		Mosca		

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates	
10^{-3}	5	10^{-3}	28	
10^{-5}	17	10^{-5}	132	
10^{-6}	28	10^{-7}	670	
10^{-8}	87	10^{-10}	3,284	
10^{-10}	139	10^{-15}	14,312	
10^{-12}	261	10^{-22}	74,162	
10^{-15}	436	10^{-33}	347,388	
10^{-18}	697	10^{-51}	1,692,692	
10^{-23}	1309		I	
10^{-29}	2181			
10^{-38}	3632			
10^{-45}	6543			
		Kliuchnikov, Maslov, &		
Meier, Eastin, & Knill		Mosca		

- Need precision 10^{-14}
- Compiled logical gates will use 10⁴ T gates
- Each of these T gates must have accuracy $\frac{10^{-14}}{10^4} = 10^{-18}$

Overhead = $14,312 \times 697 = 9,975,464$ Clifford operation cost not accounted.

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates	
10^{-3}	5	10^{-3}	28	
10^{-5}	17	10^{-5}	132	
10^{-6}	28	10^{-7}	670	
10^{-8}	87	10^{-10}	3,284	
10^{-10}	139	10^{-15}	14,312	
10^{-12}	261	10^{-22}	74,162	
10^{-15}	436	10^{-33}	347,388	
10^{-18}	697	10^{-51}	1,692,692	
10^{-23}	1309		I	
10^{-29}	2181			
10^{-38}	3632			
10^{-45}	6543			
		Kliuchnikov, Maslov, &		
Meier, Eastin, & Knill		Mosca		

• Need precision 10^{-14}

- Compiled logical gates will use 10⁴ T gates
- Each of these *T* gates must have accuracy $\frac{10^{-14}}{10^4} = 10^{-18}$

Overhead = $14,312 \times 697 = 9,975,464$ Clifford operation cost not accounted.

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates	
10^{-3}	5	10^{-3}	28	
10^{-5}	17	10^{-5}	132	
10^{-6}	28	10^{-7}	670	
10^{-8}	87	10^{-10}	3,284	
10^{-10}	139	10^{-15}	14,312	
10^{-12}	261	10^{-22}	74,162	
10^{-15}	436	10^{-33}	347,388	
10^{-18}	697	10^{-51}	1,692,692	
10^{-23}	1309		I	
10^{-29}	2181			
10^{-38}	3632			
10^{-45}	6543			
	1	Kliuchnikov, Maslov, &		
Meier, Eastin, & Knill		Mosca		

Overhead = $14,312 \times 697 = 9,975,464$ Clifford operation cost not accounted.

Need precision

 Compiled logical gates will use 10⁴

 Each of these T gates must have

 10^{-14}

T gates

 $\frac{10^{-14}}{10^4} = 10^{-18}$

Cost for physical noise rate 1%

Precision	# inputs	Precision	# T gates
10^{-3}	5	10^{-3}	28
10^{-5}	17	10^{-5}	132
10^{-6}	28	10^{-7}	670
10^{-8}	87	10^{-10}	3,284
10^{-10}	139	10^{-15}	14,312
10^{-12}	261	10^{-22}	74,162
10^{-15}	436	10^{-33}	347,388
10^{-18}	697	10^{-51}	1,692,692
10^{-23}	1309	· · · · · · · · · · · · · · · · · · ·	I
10^{-29}	2181		
10^{-38}	3632		
10^{-45}	6543		
		Kliuchnikov, Ma	aslov, &
Meier, Eastin, & Knill		Mosca	

Overhead = $14,312 \times 697 = 9,975,464$ Clifford operation cost not accounted.

Need precision

 Compiled logical gates will use 10⁴

 Each of these T gates must have

 10^{-14}

T gates

 $\frac{10^{-14}}{10^4} = 10^{-18}$

Outline

Motivation

- 2 Fault-tolerant techniques
- 3 Compiling complex gates
- 4 High-level state distillation
 - 5 Results
- Outlook & Conclusion

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations R_k = R(2π/2^k).
 T = R₃.
- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).
- Compiling becomes trivial (next slide).
- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations R_k = R(2π/2^k).
 T = R₃.
- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).
- Compiling becomes trivial (next slide).
- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

Our approach

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations $R_k = R(2\pi/2^k)$.

• $T = R_3$.

- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).
- Compiling becomes trivial (next slide).
- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations R_k = R(2π/2^k).
 T = R₃.
- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).
- Compiling becomes trivial (next slide).
- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations R_k = R(2π/2^k).
 T = R₃.
- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).
- Compiling becomes trivial (next slide).
- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

Our approach

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations R_k = R(2π/2^k).
 T = R₃.
- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).

• Compiling becomes trivial (next slide).

- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations R_k = R(2π/2^k).
 T = R₃.
- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).
- Compiling becomes trivial (next slide).
- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations R_k = R(2π/2^k).
 T = R₃.
- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).
- Compiling becomes trivial (next slide).
- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

- High level magic-state distillation $|Y_k\rangle = |Y_\theta\rangle$ with $\theta = 2\pi/2^k$.
- Corresponding rotations R_k = R(2π/2^k).
 T = R₃.
- Note that $R_{k-1}Z|Y_k\rangle = |Y_k\rangle$.
- Need R_{k-1} to distil gates $|Y_k\rangle$ (Gottesman-Chuang).
- Compiling becomes trivial (next slide).
- Landahl & Cesare used Reed-Muller codes to distill $|Y_k\rangle$
- We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.

How to rotate a qubit by 0.23π ?

 $0.23\pi = 2\pi \times 0.00011101011100001010001111010111$

Rotate to precision 2^k with k + 1 of these rotations.
Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

 $0.23\pi = 2\pi \times 0.00011101011100001010001111010111$

 $R(2\pi/2^{32})$

Rotate to precision 2^k with k + 1 of these rotations.
Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

 $0.23\pi = 2\pi \times 0.00011101011100001010001111010111$

$$\int R(2\pi/2^{32}) \begin{cases} + \\ - \end{cases}$$

Rotate to precision 2^k with k + 1 of these rotations.
Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

 $0.23\pi = 2\pi \times 0.00011101011100001010001111010111$

$$R(2\pi/2^{32}) \begin{cases} \bigcirc \\ - \end{cases}$$

۸

Rotate to precision 2^k with k + 1 of these rotations.
Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

 $\begin{array}{l} 0.23\pi = 2\pi \times 0.00011101011100001010001111010111\\ & \uparrow \\ R(2\pi/2^{32}) \begin{cases} \textcircled{+}\\ \\ \\ \\ R(2\pi/2^{31}) \end{cases} \begin{cases} +\\ \\ \\ \\ \\ \\ \\ \end{array}$

Rotate to precision 2^k with k + 1 of these rotations.
Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

 $\begin{array}{c} 0.23\pi = 2\pi \times 0.00011101011100001010001111010111 \\ \uparrow \\ R(2\pi/2^{32}) \\ \downarrow \\ R(2\pi/2^{31}) \\ \uparrow \\ \bullet \\ \end{array}$

• Rotate to precision 2^k with k + 1 of these rotations.

• Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

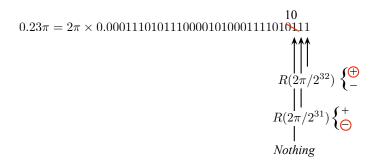


• Rotate to precision 2^k with k + 1 of these rotations.

• Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

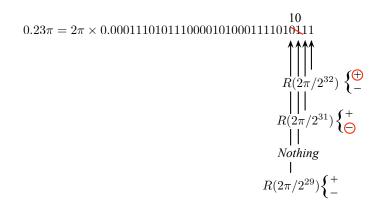


• Rotate to precision 2^k with k + 1 of these rotations.

• Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

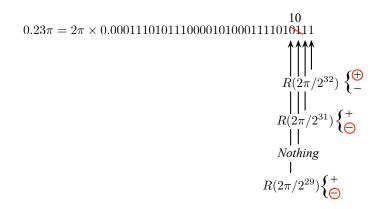
How to rotate a qubit by 0.23π ?



Rotate to precision 2^k with k + 1 of these rotations.
Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

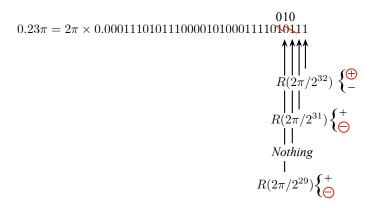


• Rotate to precision 2^k with k + 1 of these rotations.

• Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

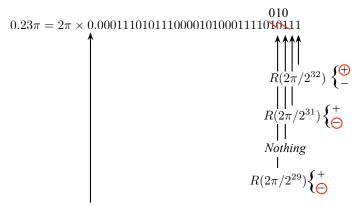


• Rotate to precision 2^k with k + 1 of these rotations.

• Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?

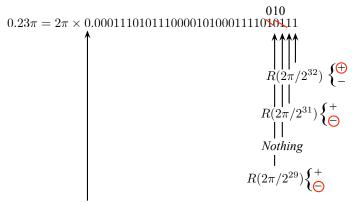


Clifford (deterministic)

Rotate to precision 2^k with k + 1 of these rotations.
Get any single-qubit rotation by Euler angles decompositions.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?



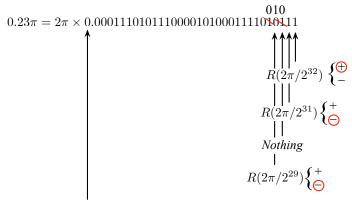
Clifford (deterministic)

• Rotate to precision 2^k with k + 1 of these rotations.

Get any single-qubit rotation by Euler angles decomposition.

Duclos-Cianci & Poulin (Sherbrooke)

How to rotate a qubit by 0.23π ?



Clifford (deterministic)

- Rotate to precision 2^k with k + 1 of these rotations.
- Get any single-qubit rotation by Euler angles decomposition.

For a qubit basis {|ψ⟩, |ψ̄⟩}, twirl T|ψ⟩ = |ψ⟩ and T|ψ̄⟩ = -|ψ̄⟩
Twirl makes matrices diagonal in {|ψ⟩, |ψ̄⟩} basis

$$\frac{1}{2}(\rho + T\rho T^{\dagger}) = \langle \psi | \rho | \psi \rangle \cdot | \psi \rangle \langle \psi | + \langle \overline{\psi} | \rho | \overline{\psi} \rangle \cdot | \overline{\psi} \rangle \langle \overline{\psi} |$$

- Twirl for $\{|0\rangle, |1\rangle\}$ is $T_0 = Z$.
- Twirl for $\{|Y_k\rangle, |\overline{Y}_k\rangle\}$ is $T_k = R_{k-1}Z$
- We can perform T_k with a $|Y_{k-1}\rangle$ state.

• For a qubit basis $\{|\psi\rangle, |\overline{\psi}\rangle\}$, twirl $T|\psi\rangle = |\psi\rangle$ and $T|\overline{\psi}\rangle = -|\overline{\psi}\rangle$ • Twirl makes matrices diagonal in $\{|\psi\rangle, |\overline{\psi}\rangle\}$ basis

$$\frac{1}{2}(\rho + T\rho T^{\dagger}) = \langle \psi | \rho | \psi \rangle \cdot | \psi \rangle \langle \psi | + \langle \overline{\psi} | \rho | \overline{\psi} \rangle \cdot | \overline{\psi} \rangle \langle \overline{\psi} |$$

- Twirl for $\{|0\rangle, |1\rangle\}$ is $T_0 = Z$.
- Twirl for $\{|Y_k\rangle, |\overline{Y}_k\rangle\}$ is $T_k = R_{k-1}Z$
- We can perform T_k with a $|Y_{k-1}\rangle$ state.

• For a qubit basis $\{|\psi\rangle, |\overline{\psi}\rangle\}$, twirl $T|\psi\rangle = |\psi\rangle$ and $T|\overline{\psi}\rangle = -|\overline{\psi}\rangle$ • Twirl makes matrices diagonal in $\{|\psi\rangle, |\overline{\psi}\rangle\}$ basis

$$\frac{1}{2}(\rho + T\rho T^{\dagger}) = \langle \psi | \rho | \psi \rangle \cdot | \psi \rangle \langle \psi | + \langle \overline{\psi} | \rho | \overline{\psi} \rangle \cdot | \overline{\psi} \rangle \langle \overline{\psi} |$$

- Twirl for $\{|0\rangle, |1\rangle\}$ is $T_0 = Z$.
- Twirl for $\{|Y_k\rangle, |\overline{Y}_k\rangle\}$ is $T_k = R_{k-1}Z$
- We can perform T_k with a $|Y_{k-1}\rangle$ state.

- For a qubit basis $\{|\psi\rangle, |\overline{\psi}\rangle\}$, twirl $T|\psi\rangle = |\psi\rangle$ and $T|\overline{\psi}\rangle = -|\overline{\psi}\rangle$
- Twirl makes matrices diagonal in $\{|\psi\rangle,|\overline{\psi}\rangle\}$ basis

$$\frac{1}{2}(\rho + T\rho T^{\dagger}) = \langle \psi | \rho | \psi \rangle \cdot | \psi \rangle \langle \psi | + \langle \overline{\psi} | \rho | \overline{\psi} \rangle \cdot | \overline{\psi} \rangle \langle \overline{\psi} |$$

- Twirl for $\{|0\rangle, |1\rangle\}$ is $T_0 = Z$.
- Twirl for $\{|Y_k\rangle, |\overline{Y}_k\rangle\}$ is $T_k = R_{k-1}Z$
- We can perform T_k with a $|Y_{k-1}\rangle$ state.

- For a qubit basis $\{|\psi\rangle, |\overline{\psi}\rangle\}$, twirl $T|\psi\rangle = |\psi\rangle$ and $T|\overline{\psi}\rangle = -|\overline{\psi}\rangle$
- Twirl makes matrices diagonal in $\{|\psi\rangle,|\overline{\psi}\rangle\}$ basis

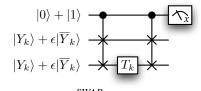
$$\frac{1}{2}(\rho + T\rho T^{\dagger}) = \langle \psi | \rho | \psi \rangle \cdot | \psi \rangle \langle \psi | + \langle \overline{\psi} | \rho | \overline{\psi} \rangle \cdot | \overline{\psi} \rangle \langle \overline{\psi} |$$

- Twirl for $\{|0\rangle, |1\rangle\}$ is $T_0 = Z$.
- Twirl for $\{|Y_k\rangle, |\overline{Y}_k\rangle\}$ is $T_k = R_{k-1}Z$
- We can perform T_k with a $|Y_{k-1}\rangle$ state.

 $\begin{array}{c|c} |0\rangle + |1\rangle & \bullet \\ |Y_k\rangle + \epsilon |\overline{Y}_k\rangle & \bullet \end{array}$ $|Y_k\rangle + \epsilon |\overline{Y}_k\rangle - T_k$ $(|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle \xrightarrow{SWAP} |0\rangle|Y_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|Y_k\rangle$

 $\begin{array}{c|c} |0\rangle + |1\rangle & \bullet \\ |Y_k\rangle + \epsilon |\overline{Y}_k\rangle & \bullet \end{array}$ $|Y_k\rangle + \epsilon |\overline{Y}_k\rangle - T_k$ $(|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle \xrightarrow{SWAP} |0\rangle|Y_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|Y_k\rangle$ $\xrightarrow{T_k} |0\rangle |Y_k\rangle |Y_k\rangle + |1\rangle |Y_k\rangle |Y_k\rangle$

 $\begin{array}{c|c} |0\rangle + |1\rangle & \bullet \\ |Y_k\rangle + \epsilon |\overline{Y}_k\rangle & \bullet \end{array}$ $|Y_k\rangle + \epsilon |\overline{Y}_k\rangle - T_k$ $(|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle \xrightarrow{SWAP} |0\rangle|Y_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|Y_k\rangle$ $\xrightarrow{T_k} |0\rangle |Y_k\rangle |Y_k\rangle + |1\rangle |Y_k\rangle |Y_k\rangle$ $\xrightarrow{SWAP} |0\rangle |Y_k\rangle |Y_k\rangle + |1\rangle |Y_k\rangle |Y_k\rangle$



 $(|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle \xrightarrow{SWAP} |0\rangle|Y_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|Y_k\rangle$ $\xrightarrow{T_k} |0\rangle|Y_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|Y_k\rangle$ $\xrightarrow{SWAP} |0\rangle|Y_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|Y_k\rangle$ $= (|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle$

 $(|0\rangle + |1\rangle)|\overline{Y}_{k}\rangle|Y_{k}\rangle \xrightarrow{SWAP} |0\rangle|\overline{Y}_{k}\rangle|Y_{k}\rangle + |1\rangle|Y_{k}\rangle|\overline{Y}_{k}\rangle$ $\xrightarrow{T_{k}} |0\rangle|\overline{Y}_{k}\rangle|Y_{k}\rangle - |1\rangle|Y_{k}\rangle|\overline{Y}_{k}\rangle$ $\xrightarrow{SWAP} |0\rangle|\overline{Y}_{k}\rangle|Y_{k}\rangle - |1\rangle|\overline{Y}_{k}\rangle|Y_{k}\rangle$ $= (|0\rangle - |1\rangle)|\overline{Y}_{k}\rangle|Y_{k}\rangle$

 $\begin{array}{c|c} |0\rangle + |1\rangle & \bullet \\ |Y_k\rangle + \epsilon |\overline{Y}_k\rangle & \bullet \end{array}$ $|Y_k\rangle + \epsilon |\overline{Y}_k\rangle - T_k$ $(|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle \xrightarrow{SWAP} |0\rangle|Y_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|Y_k\rangle$ $\xrightarrow{T_k} |0\rangle |Y_k\rangle |Y_k\rangle + |1\rangle |Y_k\rangle |Y_k\rangle$ $\xrightarrow{SWAP} |0\rangle |Y_k\rangle |Y_k\rangle + |1\rangle |Y_k\rangle |Y_k\rangle$ $= (|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle$ $(|0\rangle + |1\rangle)|\overline{Y}_k\rangle|Y_k\rangle \xrightarrow{SWAP} |0\rangle|\overline{Y}_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|\overline{Y}_k\rangle$

 $|0\rangle + |1\rangle -$ $|Y_k\rangle + \epsilon |\overline{Y}_k\rangle -$ $|Y_k\rangle + \epsilon |\overline{Y}_k\rangle - T_k$ $(|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle \xrightarrow{SWAP} |0\rangle|Y_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|Y_k\rangle$ $\xrightarrow{T_k} |0\rangle |Y_k\rangle |Y_k\rangle + |1\rangle |Y_k\rangle |Y_k\rangle$ $\xrightarrow{SWAP} |0\rangle |Y_k\rangle |Y_k\rangle + |1\rangle |Y_k\rangle |Y_k\rangle$ $= (|0\rangle + |1\rangle)|Y_k\rangle|Y_k\rangle$ $(|0\rangle + |1\rangle)|\overline{Y}_k\rangle|Y_k\rangle \xrightarrow{SWAP} |0\rangle|\overline{Y}_k\rangle|Y_k\rangle + |1\rangle|Y_k\rangle|\overline{Y}_k\rangle$ $\xrightarrow{T_k} |0\rangle |\overline{Y}_k\rangle |Y_k\rangle - |1\rangle |Y_k\rangle |\overline{Y}_k\rangle$

$$|0\rangle + |1\rangle \longrightarrow X$$

$$|Y_{k}\rangle + \epsilon |\overline{Y}_{k}\rangle \longrightarrow T_{k}$$

$$|Y_{k}\rangle + \epsilon |\overline{Y}_{k}\rangle \longrightarrow T_{k}$$

$$(|0\rangle + |1\rangle)|Y_{k}\rangle|Y_{k}\rangle \xrightarrow{SWAP} |0\rangle|Y_{k}\rangle|Y_{k}\rangle + |1\rangle|Y_{k}\rangle|Y_{k}\rangle$$

$$\xrightarrow{T_{k}} |0\rangle|Y_{k}\rangle|Y_{k}\rangle + |1\rangle|Y_{k}\rangle|Y_{k}\rangle$$

$$= (|0\rangle + |1\rangle)|Y_{k}\rangle|Y_{k}\rangle$$

$$= (|0\rangle + |1\rangle)|Y_{k}\rangle|Y_{k}\rangle$$

$$(|0\rangle + |1\rangle)|\overline{Y}_{k}\rangle|Y_{k}\rangle \xrightarrow{SWAP} |0\rangle|\overline{Y}_{k}\rangle|Y_{k}\rangle + |1\rangle|Y_{k}\rangle|\overline{Y}_{k}\rangle$$

$$\xrightarrow{T_{k}} |0\rangle|\overline{Y}_{k}\rangle|Y_{k}\rangle - |1\rangle|Y_{k}\rangle|\overline{Y}_{k}\rangle$$

$$\xrightarrow{SWAP} |0\rangle|\overline{Y}_{k}\rangle|Y_{k}\rangle - |1\rangle|\overline{Y}_{k}\rangle|Y_{k}\rangle$$

$$= (|0\rangle - |1\rangle)|\overline{Y}_{k}\rangle|Y_{k}\rangle$$

$$|0\rangle + |1\rangle \longrightarrow \sum_{|Y_{k}\rangle + \epsilon |\overline{Y}_{k}\rangle} |Y_{k}\rangle + \epsilon |\overline{Y}_{k}\rangle \longrightarrow \overline{T_{k}}$$

$$|Y_{k}\rangle + \epsilon |\overline{Y}_{k}\rangle \longrightarrow \overline{T_{k}} |0\rangle |Y_{k}\rangle |Y_{k}\rangle + |1\rangle |Y_{k}\rangle |Y_{k}\rangle$$

$$(|0\rangle + |1\rangle) |Y_{k}\rangle |Y_{k}\rangle \xrightarrow{SWAP} |0\rangle |Y_{k}\rangle |Y_{k}\rangle + |1\rangle |Y_{k}\rangle |Y_{k}\rangle$$

$$= (|0\rangle + |1\rangle) |Y_{k}\rangle |Y_{k}\rangle = (|0\rangle + |1\rangle) |Y_{k}\rangle |Y_{k}\rangle$$

$$(|0\rangle + |1\rangle) |\overline{Y}_{k}\rangle |Y_{k}\rangle \xrightarrow{SWAP} |0\rangle |\overline{Y}_{k}\rangle |Y_{k}\rangle + |1\rangle |Y_{k}\rangle |\overline{Y}_{k}\rangle$$

$$\frac{T_{k}}{-1} |0\rangle |\overline{Y}_{k}\rangle |Y_{k}\rangle - |1\rangle |Y_{k}\rangle |\overline{Y}_{k}\rangle$$

$$= (|0\rangle - |1\rangle) |\overline{Y}_{k}\rangle |Y_{k}\rangle$$

• Get outcome + with probability $1 - 2\epsilon$.

- Given this outcome, state is $|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle |\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k ?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?

• Get outcome + with probability $1 - 2\epsilon$.

- Given this outcome, state is $|Y_k\rangle|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle|\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k ?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?

- Get outcome + with probability $1 2\epsilon$.
- Given this outcome, state is $|Y_k\rangle|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle|\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k ?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?

- Get outcome + with probability $1 2\epsilon$.
- Given this outcome, state is $|Y_k\rangle|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle|\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k ?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?

- Get outcome + with probability $1 2\epsilon$.
- Given this outcome, state is $|Y_k\rangle|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle|\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

• Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.

- This can be obtained from any state by twirling.
- How to perform T_k ?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?

- Get outcome + with probability $1 2\epsilon$.
- Given this outcome, state is $|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle |\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k ?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?

- Get outcome + with probability $1 2\epsilon$.
- Given this outcome, state is $|Y_k\rangle|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle|\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?
 - Not a Clifford operation.

- Get outcome + with probability $1 2\epsilon$.
- Given this outcome, state is $|Y_k\rangle|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle|\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.

• How to perform controlled-SWAP without introducing more errors?

- Get outcome + with probability $1 2\epsilon$.
- Given this outcome, state is $|Y_k\rangle|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle|\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

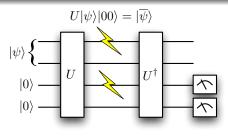
- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?

- Get outcome + with probability $1 2\epsilon$.
- Given this outcome, state is $|Y_k\rangle|Y_k\rangle + \epsilon^2 |\overline{Y}_k\rangle|\overline{Y}_k\rangle$.
- Get outcome with probability 2ϵ , reject the state.

Distillation

Can quadratically increase the fidelity of $|Y_k\rangle$ using T_k and controlled SWAP gate.

- Works as well for incoherent noise $|Y_k\rangle\langle Y_k| + \epsilon |\overline{Y}_k\rangle\langle \overline{Y}_k|$.
 - This can be obtained from any state by twirling.
- How to perform T_k?
 - Answer: By injecting distilled $|Y_{k-1}\rangle$ states.
- How to perform controlled-SWAP without introducing more errors?
 - Not a Clifford operation.



 $\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ$ $\overline{X}_1 \equiv UX_1 U^{\dagger} = XXII$ $\overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX$ $\overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII$ $S_1 \equiv UZ_3 U^{\dagger} = ZZZZ$ $S_2 \equiv UZ_4 U^{\dagger} = XXXX$

• U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

• Error rate $\epsilon \rightarrow \epsilon^2$.

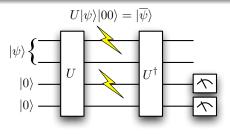
• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1 H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

•
$$H^{\otimes 4}\overline{Z}_2 H^{\otimes 4} = ZIIZ = \overline{Z}_1$$

•
$$H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$$



$$\begin{array}{l} \overline{Z}_1 \equiv UZ_1U^{\dagger} = ZIIZ \\ \overline{X}_1 \equiv UX_1U^{\dagger} = XXII \\ \overline{Z}_2 \equiv UZ_2U^{\dagger} = XIIX \\ \overline{X}_2 \equiv UX_2U^{\dagger} = ZZII \\ S_1 \equiv UZ_3U^{\dagger} = ZZZZ \\ S_2 \equiv UZ_4U^{\dagger} = XXXX \end{array}$$

• *U* is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

• Error rate $\epsilon \rightarrow \epsilon^2$.

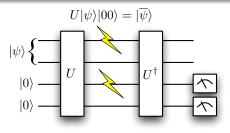
• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

•
$$H^{\otimes 4}\overline{Z}_2 H^{\otimes 4} = ZIIZ = \overline{Z}_1$$

•
$$H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$$



$$\begin{array}{l} \overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \\ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \\ \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \\ \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII \\ S_1 \equiv UZ_3 U^{\dagger} = ZZZZ \\ S_2 \equiv UZ_4 U^{\dagger} = XXXX \end{array}$$

• U is Clifford.

•
$$Z|0
angle = |0
angle \Leftrightarrow S|\overline{\psi}
angle = |\overline{\psi}
angle.$$

• This code detects all single-qubit errors.

• Error rate $\epsilon \rightarrow \epsilon^2$.

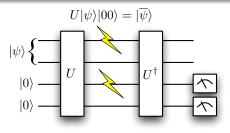
• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

•
$$H^{\otimes 4}\overline{Z}_2 H^{\otimes 4} = ZIIZ = \overline{Z}_1$$

•
$$H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$$



$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

• U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

• Error rate $\epsilon \rightarrow \epsilon^2$.

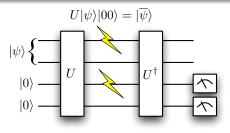
• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

•
$$H^{\otimes 4}\overline{Z}_2 H^{\otimes 4} = ZIIZ = \overline{Z}_1$$

•
$$H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$$



$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

• U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

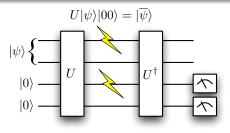
• This code detects all single-qubit errors.

• Error rate $\epsilon \rightarrow \epsilon^2$.

• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1 H^{\otimes 4} = XIIX = \overline{Z}_2$$

- $H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$
- $H^{\otimes 4}\overline{Z}_2 H^{\otimes 4} = ZIIZ = \overline{Z}_1$
- $H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$



$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

• Error rate $\epsilon \to \epsilon^2$.

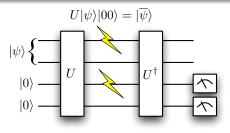
• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1 H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

•
$$H^{\otimes 4}\overline{Z}_2 H^{\otimes 4} = ZIIZ = \overline{Z}_1$$

• $H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$



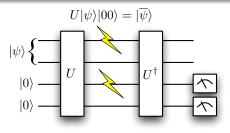
$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

- Error rate $\epsilon \to \epsilon^2$.
- Apply *H* to all qubits maps *S* to itself.
 - $H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$
 - $H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$
 - $H^{\otimes 4}\overline{Z}_2H^{\otimes 4} = ZIIZ = \overline{Z}_1$
 - $H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$



$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

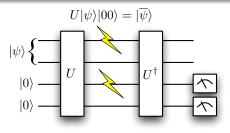
• Error rate $\epsilon \rightarrow \epsilon^2$.

• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

- $H^{\otimes 4}\overline{Z}_2H^{\otimes 4} = ZIIZ = \overline{Z}_1^2$
- $H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$



$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

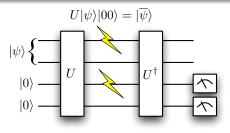
• Error rate $\epsilon \rightarrow \epsilon^2$.

• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

- $H^{\otimes 4}\overline{Z}_2 H^{\otimes 4} = \overline{Z}_1 I \overline{Z}_1$
- $H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$



$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

• Error rate $\epsilon \to \epsilon^2$.

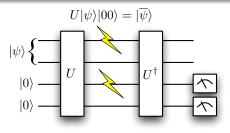
• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

•
$$H^{\otimes 4}\overline{Z}_2H^{\otimes 4} = ZIIZ = \overline{Z}_1$$

• $H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$



$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

• U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

• Error rate $\epsilon \to \epsilon^2$.

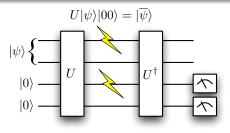
• Apply *H* to all qubits maps *S* to itself.

•
$$H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

•
$$H^{\otimes 4}\overline{Z}_2H^{\otimes 4} = ZIIZ = \overline{Z}_1$$

•
$$H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$$



$$\overline{Z}_1 \equiv UZ_1 U^{\dagger} = ZIIZ \overline{X}_1 \equiv UX_1 U^{\dagger} = XXII \overline{Z}_2 \equiv UZ_2 U^{\dagger} = XIIX \overline{X}_2 \equiv UX_2 U^{\dagger} = ZZII S_1 \equiv UZ_3 U^{\dagger} = ZZZZ S_2 \equiv UZ_4 U^{\dagger} = XXXX$$

U is Clifford.

•
$$Z|0\rangle = |0\rangle \Leftrightarrow S|\overline{\psi}\rangle = |\overline{\psi}\rangle.$$

• This code detects all single-qubit errors.

• Error rate $\epsilon \to \epsilon^2$.

• Apply *H* to all qubits maps *S* to itself.

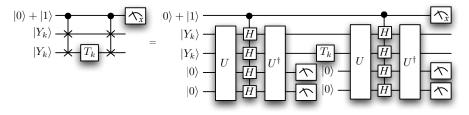
•
$$H^{\otimes 4}\overline{Z}_1H^{\otimes 4} = XIIX = \overline{Z}_2$$

•
$$H^{\otimes 4}\overline{X}_1H^{\otimes 4} = ZZII = \overline{X}_2$$

•
$$H^{\otimes 4}\overline{Z}_2H^{\otimes 4} = ZIIZ = \overline{Z}_1$$

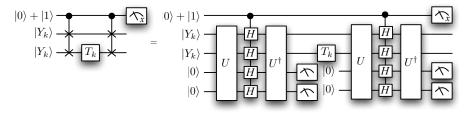
•
$$H^{\otimes 4}\overline{X}_2H^{\otimes 4} = XXII = \overline{X}_2$$

Encoded SWAP test



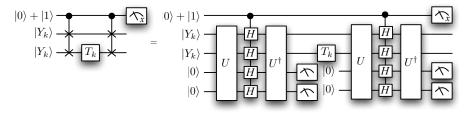
- Note that $H = R(\pi/8) Z R(-\pi/8)$
- So up to $\pi/8$ rotations, c-H = c-Z, the latter is Clifford.
- $\pi/8$ rotations are obtained by injecting $|Y_3\rangle$.
- But $|Y_3\rangle$ gates are noisy!
 - This is OK, they are used inside an error correcting code.
 - We can use previously distilled $|Y_3\rangle$ states when distilling $|Y_k\rangle$.

Encoded SWAP test



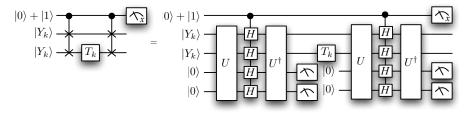
- Note that $H = R(\pi/8) Z R(-\pi/8)$
- So up to $\pi/8$ rotations, c-H = c-Z, the latter is Clifford.
- $\pi/8$ rotations are obtained by injecting $|Y_3\rangle$.
- But $|Y_3\rangle$ gates are noisy!
 - This is OK, they are used inside an error correcting code.
 - We can use previously distilled $|Y_3\rangle$ states when distilling $|Y_k\rangle$.

Encoded SWAP test



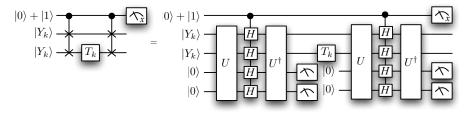
- Note that $H = R(\pi/8) Z R(-\pi/8)$
- So up to $\pi/8$ rotations, c-H = c-Z, the latter is Clifford.
- $\pi/8$ rotations are obtained by injecting $|Y_3\rangle$.
- But $|Y_3\rangle$ gates are noisy!
 - This is OK, they are used inside an error correcting code.
 - We can use previously distilled $|Y_3\rangle$ states when distilling $|Y_k\rangle$.

Encoded SWAP test



- Note that $H = R(\pi/8) Z R(-\pi/8)$
- So up to $\pi/8$ rotations, c-H = c-Z, the latter is Clifford.
- $\pi/8$ rotations are obtained by injecting $|Y_3\rangle$.
- But $|Y_3\rangle$ gates are noisy!
 - This is OK, they are used inside an error correcting code.
 - We can use previously distilled $|Y_3\rangle$ states when distilling $|Y_k\rangle$.

Encoded SWAP test



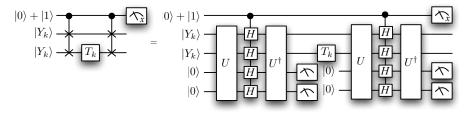
How to realize controlled-H gates? (Not Clifford)

- Note that $H = R(\pi/8) Z R(-\pi/8)$
- So up to $\pi/8$ rotations, c-H = c-Z, the latter is Clifford.
- $\pi/8$ rotations are obtained by injecting $|Y_3\rangle$.

• But $|Y_3\rangle$ gates are noisy!

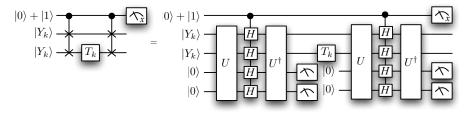
- This is OK, they are used inside an error correcting code.
- We can use previously distilled $|Y_3\rangle$ states when distilling $|Y_k\rangle$.

Encoded SWAP test



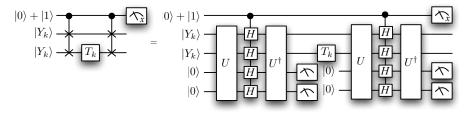
- Note that $H = R(\pi/8) Z R(-\pi/8)$
- So up to $\pi/8$ rotations, c-H = c-Z, the latter is Clifford.
- $\pi/8$ rotations are obtained by injecting $|Y_3\rangle$.
- But |Y₃ gates are noisy!
 - This is OK, they are used inside an error correcting code.
 - We can use previously distilled $|Y_3\rangle$ states when distilling $|Y_k\rangle$.

Encoded SWAP test



- Note that $H = R(\pi/8) Z R(-\pi/8)$
- So up to $\pi/8$ rotations, c-H = c-Z, the latter is Clifford.
- $\pi/8$ rotations are obtained by injecting $|Y_3\rangle$.
- But $|Y_3\rangle$ gates are noisy!
 - This is OK, they are used inside an error correcting code.
 - We can use previously distilled $|Y_3\rangle$ states when distilling $|Y_k\rangle$.

Encoded SWAP test



- Note that $H = R(\pi/8) Z R(-\pi/8)$
- So up to $\pi/8$ rotations, c-H = c-Z, the latter is Clifford.
- $\pi/8$ rotations are obtained by injecting $|Y_3\rangle$.
- But $|Y_3\rangle$ gates are noisy!
 - This is OK, they are used inside an error correcting code.
 - We can use previously distilled $|Y_3\rangle$ states when distilling $|Y_k\rangle$.

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

• Some noisy versions of $|Y_k\rangle$.

• Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .

- As used in the SWAP test.
- To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of |Y_j> has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of $|Y_j\rangle$ has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of |Y_j> has two components (diagonal and off-diagonal).

To distill a $|Y_k\rangle$ state, we need...

- Some noisy versions of $|Y_k\rangle$.
- Some "not so noisy" versions of $|Y_{k-1}\rangle$ to implement the twirl T_k .
 - As used in the SWAP test.
 - To make the $|Y_k\rangle$ noise more diagonal if desired (not needed).
- Some "not so noisy" versions of $|Y_3\rangle$ to implement the c-*H*.

- Compute the accuracy of the distilled $|Y_k\rangle$.
- Compute the rejection probability (wasting these inputs)
 - Reject when the 4-qubit code detects an error.
 - Reject when the SWAP test fails.
- Knowing the rejection probability enables us to compute the average number of each component used.
- In our calculations, the accuracy of |Y_j> has two components (diagonal and off-diagonal).

Outline

Motivation

- 2 Fault-tolerant techniques
- 3 Compiling complex gates
- 4 High-level state distillation

5 Results

Outlook & Conclusion

• Distillation with perfect gates takes ϵ_k to $\epsilon'_k = c\epsilon_k^2$.

• The use of noisy $|Y_j\rangle$ to distill $|Y_k\rangle$ will deteriorate this ϵ'_k .

• How accurate should the $|Y_j\rangle$ be?

- Having $\epsilon_j = 10^{-30}$ while attempting to distill $\epsilon'_k = 10^{-10}$ seems like an overkill, we've wasted our time obtaining very high-quality $|Y_j\rangle$.
- If they are too noisy, distillation will be useless.
- If N_j states |Y_j⟩ are used in the distillation, use ε_j ≈ ε'_k/N_j.
 This will roughly double ε'_k.
- This could be thoroughly optimized.

- Distillation with perfect gates takes ϵ_k to $\epsilon'_k = c\epsilon_k^2$.
- The use of noisy $|Y_j\rangle$ to distill $|Y_k\rangle$ will deteriorate this ϵ'_k .

• How accurate should the $|Y_j\rangle$ be?

- Having $\epsilon_j = 10^{-30}$ while attempting to distill $\epsilon'_k = 10^{-10}$ seems like an overkill, we've wasted our time obtaining very high-quality $|Y_i\rangle$.
- If they are too noisy, distillation will be useless.
- If N_j states |Y_j⟩ are used in the distillation, use ε_j ≈ ε'_k/N_j.
 This will roughly double ε'_k.
- This could be thoroughly optimized.

- Distillation with perfect gates takes ϵ_k to $\epsilon'_k = c\epsilon_k^2$.
- The use of noisy $|Y_j\rangle$ to distill $|Y_k\rangle$ will deteriorate this ϵ'_k .
- How accurate should the $|Y_j\rangle$ be?
 - Having $\epsilon_j = 10^{-30}$ while attempting to distill $\epsilon'_k = 10^{-10}$ seems like an overkill, we've wasted our time obtaining very high-quality $|Y_j\rangle$.
 - If they are too noisy, distillation will be useless.
- If N_j states |Y_j⟩ are used in the distillation, use ϵ_j ≈ ϵ'_k/N_j.
 This will roughly double ϵ'_k.
- This could be thoroughly optimized.

- Distillation with perfect gates takes ϵ_k to $\epsilon'_k = c\epsilon_k^2$.
- The use of noisy $|Y_j\rangle$ to distill $|Y_k\rangle$ will deteriorate this ϵ'_k .
- How accurate should the $|Y_j\rangle$ be?
 - Having $\epsilon_j = 10^{-30}$ while attempting to distill $\epsilon'_k = 10^{-10}$ seems like an overkill, we've wasted our time obtaining very high-quality $|Y_j\rangle$.
 - If they are too noisy, distillation will be useless.
- If N_j states $|Y_j\rangle$ are used in the distillation, use $\epsilon_j \approx \epsilon'_k/N_j$.
 - This will roughly double ϵ'_k .
- This could be thoroughly optimized.

- Distillation with perfect gates takes ϵ_k to $\epsilon'_k = c\epsilon_k^2$.
- The use of noisy $|Y_j\rangle$ to distill $|Y_k\rangle$ will deteriorate this ϵ'_k .
- How accurate should the $|Y_j\rangle$ be?
 - Having $\epsilon_j = 10^{-30}$ while attempting to distill $\epsilon'_k = 10^{-10}$ seems like an overkill, we've wasted our time obtaining very high-quality $|Y_j\rangle$.
 - If they are too noisy, distillation will be useless.
- If N_j states $|Y_j\rangle$ are used in the distillation, use $\epsilon_j \approx \epsilon'_k/N_j$. • This will roughly double ϵ'_k .
- This could be thoroughly optimized.

- Distillation with perfect gates takes ϵ_k to $\epsilon'_k = c\epsilon_k^2$.
- The use of noisy $|Y_j\rangle$ to distill $|Y_k\rangle$ will deteriorate this ϵ'_k .
- How accurate should the $|Y_j\rangle$ be?
 - Having $\epsilon_j = 10^{-30}$ while attempting to distill $\epsilon'_k = 10^{-10}$ seems like an overkill, we've wasted our time obtaining very high-quality $|Y_j\rangle$.
 - If they are too noisy, distillation will be useless.
- If N_j states $|Y_j\rangle$ are used in the distillation, use $\epsilon_j \approx \epsilon'_k/N_j$.
 - This will roughly double ϵ'_k .
- This could be thoroughly optimized.

- Distillation with perfect gates takes ϵ_k to $\epsilon'_k = c\epsilon_k^2$.
- The use of noisy $|Y_j\rangle$ to distill $|Y_k\rangle$ will deteriorate this ϵ'_k .
- How accurate should the $|Y_j\rangle$ be?
 - Having $\epsilon_j = 10^{-30}$ while attempting to distill $\epsilon'_k = 10^{-10}$ seems like an overkill, we've wasted our time obtaining very high-quality $|Y_j\rangle$.
 - If they are too noisy, distillation will be useless.
- If N_j states $|Y_j\rangle$ are used in the distillation, use $\epsilon_j \approx \epsilon'_k/N_j$.
 - This will roughly double ϵ'_k .
- This could be thoroughly optimized.

- Distillation with perfect gates takes ϵ_k to $\epsilon'_k = c\epsilon_k^2$.
- The use of noisy $|Y_j\rangle$ to distill $|Y_k\rangle$ will deteriorate this ϵ'_k .
- How accurate should the $|Y_j\rangle$ be?
 - Having $\epsilon_j = 10^{-30}$ while attempting to distill $\epsilon'_k = 10^{-10}$ seems like an overkill, we've wasted our time obtaining very high-quality $|Y_j\rangle$.
 - If they are too noisy, distillation will be useless.
- If N_j states $|Y_j\rangle$ are used in the distillation, use $\epsilon_j \approx \epsilon'_k/N_j$.
 - This will roughly double ϵ'_k .
- This could be thoroughly optimized.

Results

Initial accuracy

- Standard assumption: |Y₃⟩ is initially prepared with accuracy 1%, and distilled to any desired accuracy.
- How well should we assume $|Y_j\rangle$ can be prepared?
- Does it make sense to prepare $|Y_{10}\rangle \approx |0\rangle + 2^{-10}|1\rangle$ to accuracy 1%?
- May as well prepare $|0\rangle$.

Assumption on initial accuracy

- We use the scheme of Meier, Eastin, & Knill to prepare $|Y_3\rangle$ assuming an initial error of 1%.
- For all other |Y_k⟩, k > 3, we initially prepare |0⟩ ≈ |Y_k⟩, which we can do to great accuracy (Clifford).
- As always, additional cost for Clifford operations is not accounted.

Initial accuracy

- Standard assumption: |Y₃> is initially prepared with accuracy 1%, and distilled to any desired accuracy.
- How well should we assume $|Y_j\rangle$ can be prepared?
- Does it make sense to prepare $|Y_{10}\rangle \approx |0\rangle + 2^{-10}|1\rangle$ to accuracy 1%?
- May as well prepare $|0\rangle$.

- We use the scheme of Meier, Eastin, & Knill to prepare $|Y_3\rangle$ assuming an initial error of 1%.
- For all other |Y_k⟩, k > 3, we initially prepare |0⟩ ≈ |Y_k⟩, which we can do to great accuracy (Clifford).
- As always, additional cost for Clifford operations is not accounted.

Initial accuracy

- Standard assumption: |Y₃> is initially prepared with accuracy 1%, and distilled to any desired accuracy.
- How well should we assume $|Y_j\rangle$ can be prepared?
- Does it make sense to prepare $|Y_{10}\rangle \approx |0\rangle + 2^{-10}|1\rangle$ to accuracy 1%?
- May as well prepare $|0\rangle$.

- We use the scheme of Meier, Eastin, & Knill to prepare $|Y_3\rangle$ assuming an initial error of 1%.
- For all other |Y_k⟩, k > 3, we initially prepare |0⟩ ≈ |Y_k⟩, which we can do to great accuracy (Clifford).
- As always, additional cost for Clifford operations is not accounted.

Initial accuracy

- Standard assumption: |Y₃> is initially prepared with accuracy 1%, and distilled to any desired accuracy.
- How well should we assume $|Y_j\rangle$ can be prepared?
- Does it make sense to prepare $|Y_{10}\rangle \approx |0\rangle + 2^{-10}|1\rangle$ to accuracy 1%?
- May as well prepare $|0\rangle$.

- We use the scheme of Meier, Eastin, & Knill to prepare $|Y_3\rangle$ assuming an initial error of 1%.
- For all other |Y_k⟩, k > 3, we initially prepare |0⟩ ≈ |Y_k⟩, which we can do to great accuracy (Clifford).
- As always, additional cost for Clifford operations is not accounted.

Initial accuracy

- Standard assumption: |Y₃> is initially prepared with accuracy 1%, and distilled to any desired accuracy.
- How well should we assume $|Y_j\rangle$ can be prepared?
- Does it make sense to prepare $|Y_{10}\rangle \approx |0\rangle + 2^{-10}|1\rangle$ to accuracy 1%?
- May as well prepare $|0\rangle$.

- We use the scheme of Meier, Eastin, & Knill to prepare |Y₃> assuming an initial error of 1%.
- For all other |Y_k⟩, k > 3, we initially prepare |0⟩ ≈ |Y_k⟩, which we can do to great accuracy (Clifford).
- As always, additional cost for Clifford operations is not accounted.

Initial accuracy

- Standard assumption: |Y₃> is initially prepared with accuracy 1%, and distilled to any desired accuracy.
- How well should we assume $|Y_j\rangle$ can be prepared?
- Does it make sense to prepare $|Y_{10}\rangle \approx |0\rangle + 2^{-10}|1\rangle$ to accuracy 1%?
- May as well prepare $|0\rangle$.

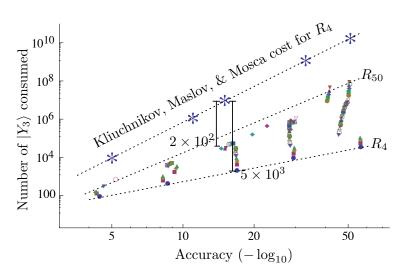
- We use the scheme of Meier, Eastin, & Knill to prepare |Y₃⟩ assuming an initial error of 1%.
- For all other |Y_k⟩, k > 3, we initially prepare |0⟩ ≈ |Y_k⟩, which we can do to great accuracy (Clifford).
- As always, additional cost for Clifford operations is not accounted.

Initial accuracy

- Standard assumption: |Y₃> is initially prepared with accuracy 1%, and distilled to any desired accuracy.
- How well should we assume $|Y_j\rangle$ can be prepared?
- Does it make sense to prepare $|Y_{10}\rangle \approx |0\rangle + 2^{-10}|1\rangle$ to accuracy 1%?
- May as well prepare $|0\rangle$.

- We use the scheme of Meier, Eastin, & Knill to prepare |Y₃> assuming an initial error of 1%.
- For all other |Y_k⟩, k > 3, we initially prepare |0⟩ ≈ |Y_k⟩, which we can do to great accuracy (Clifford).
- As always, additional cost for Clifford operations is not accounted.

Results: cost of realizing R_k



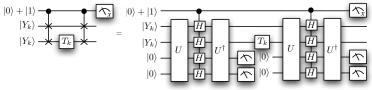
Results

Outline

Motivation

- 2 Fault-tolerant techniques
- 3 Compiling complex gates
- 4 High-level state distillation

5 Results

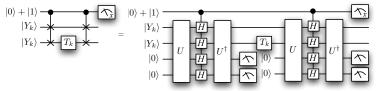


- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states $|Y_3\rangle$: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that $H^{\otimes n}$ SWAPs qubit *j* with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$

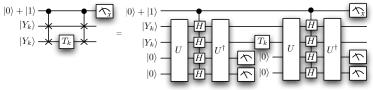
$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1\\Z_{j}=1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots m-1$$

$$\overline{Z}_{j} = \prod_{i=0}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots 2m-1$$



- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states $|Y_3\rangle$: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that $H^{\otimes n}$ SWAPs qubit *j* with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$
$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1\\2j+1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots m-1$$
$$\overline{Z}_{j} = \prod_{i=0}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots 2m-1$$

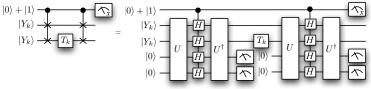


- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states $|Y_3\rangle$: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that $H^{\otimes n}$ SWAPs qubit *j* with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$

$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1\\2j+1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots m-1$$

$$\overline{Z}_{j} = \prod_{i=0}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots 2m-1$$

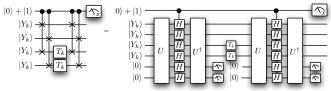


- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states |Y₃>: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that $H^{\otimes n}$ SWAPs qubit *j* with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$

$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots m-1$$

$$\overline{Z}_{j} = \prod_{i=0}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots 2m-1$$

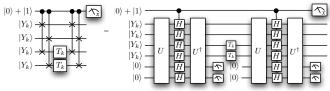


- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states $|Y_3\rangle$: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that $H^{\otimes n}$ SWAPs qubit *j* with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$

$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots m-1$$

$$\overline{Z}_{j} = \prod_{i=0}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots 2m-1$$

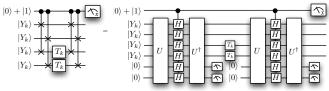


- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states $|Y_3\rangle$: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that H^{⊗n} SWAPs qubit j with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$

$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots m-1$$

$$\overline{Z}_{j} = \prod_{i=0}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots 2m-1$$

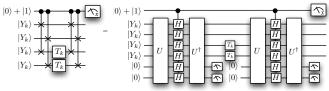


- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states $|Y_3\rangle$: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that H^{⊗n} SWAPs qubit j with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$

$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots, m-1$$

$$\overline{Z}_{j} = \prod_{i=0}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots, 2m-1$$

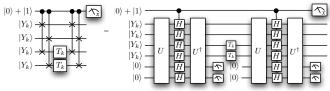


- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states $|Y_3\rangle$: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that H^{⊗n} SWAPs qubit j with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$

$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1\\Z_{j}=1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots m-1$$

$$\overline{Z}_{j} = \prod_{i=0}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots 2m-1$$



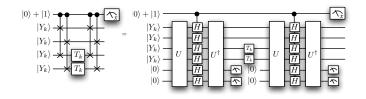
- Requires 4 c-H gates to distill 2 states $|Y_k\rangle$ (per round).
- Gates c-H are realized by injecting states $|Y_3\rangle$: rate 1/2.
- Higher rate encoding?
- Use [[n = 2m + 2, k = 2m, d = 2]] with the property that H^{⊗n} SWAPs qubit j with m + j.

$$S_{0} = \prod_{i} X_{i}, \quad S_{1} = \prod_{i} Z_{i}$$

$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1\\ z_{j}=1}}^{2j+1} Z_{i}, \quad \overline{X}_{j} = X_{2j+1} X_{2j+2} \quad \text{for } j = 0, 1, \dots m-1$$

$$\overline{Z}_{j} = \prod_{\substack{i=0\\2j+1\\ z_{j}=1}}^{2j+1} X_{i}, \quad \overline{X}_{j} = Z_{2j+1} Z_{2j+2} \quad \text{for } j = m, m+1, \dots 2m-1$$

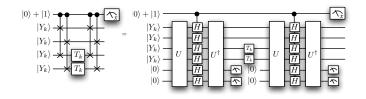
High rate generalization



• Rate = $\frac{m}{m+1} \rightarrow 1$.

- Error suppression $\epsilon \rightarrow c \epsilon^2$
 - $c \propto m^2$ since there are more locations for failures.
- Rejection probability $p \propto m\epsilon$
 - Increase *m* along the distillation flow.
- Gain is more that just factor of 2 because of the recursive nature of the distillation.
- Enables to smoothly vary target accuracy.

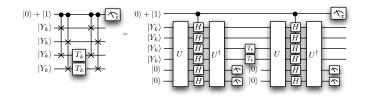
High rate generalization



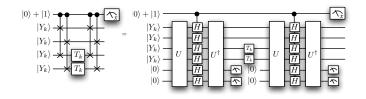
• Rate = $\frac{m}{m+1} \rightarrow 1$.

• Error suppression $\epsilon \to c \epsilon^2$

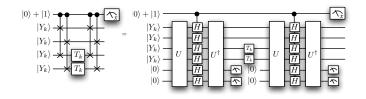
- $c \propto m^2$ since there are more locations for failures.
- Rejection probability $p \propto m\epsilon$
 - Increase *m* along the distillation flow.
- Gain is more that just factor of 2 because of the recursive nature of the distillation.
- Enables to smoothly vary target accuracy.



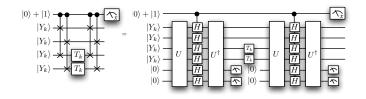
- Rate = $\frac{m}{m+1} \rightarrow 1$.
- Error suppression $\epsilon \to c \epsilon^2$
 - $c \propto m^2$ since there are more locations for failures.
- Rejection probability $p \propto m\epsilon$
 - Increase *m* along the distillation flow.
- Gain is more that just factor of 2 because of the recursive nature of the distillation.
- Enables to smoothly vary target accuracy.



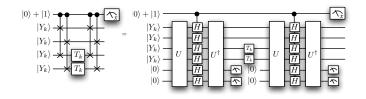
- Rate = $\frac{m}{m+1} \rightarrow 1$.
- Error suppression $\epsilon \to c \epsilon^2$
 - $c \propto m^2$ since there are more locations for failures.
- Rejection probability $p \propto m\epsilon$
 - Increase *m* along the distillation flow.
- Gain is more that just factor of 2 because of the recursive nature of the distillation.
- Enables to smoothly vary target accuracy.



- Rate $= \frac{m}{m+1} \to 1$.
- Error suppression $\epsilon \to c \epsilon^2$
 - $c \propto m^2$ since there are more locations for failures.
- Rejection probability $p \propto m\epsilon$
 - Increase *m* along the distillation flow.
- Gain is more that just factor of 2 because of the recursive nature of the distillation.
- Enables to smoothly vary target accuracy.



- Rate $= \frac{m}{m+1} \to 1$.
- Error suppression $\epsilon \to c \epsilon^2$
 - $c \propto m^2$ since there are more locations for failures.
- Rejection probability $p \propto m\epsilon$
 - Increase *m* along the distillation flow.
- Gain is more that just factor of 2 because of the recursive nature of the distillation.
- Enables to smoothly vary target accuracy.



- Rate $= \frac{m}{m+1} \to 1$.
- Error suppression $\epsilon \to c \epsilon^2$
 - $c \propto m^2$ since there are more locations for failures.
- Rejection probability $p \propto m\epsilon$
 - Increase *m* along the distillation flow.
- Gain is more that just factor of 2 because of the recursive nature of the distillation.
- Enables to smoothly vary target accuracy.

Conclusion & Outlook

• Distillation of complex magic states to circumvent Solovay-Kitaev-like compiling.

- Found savings of a 2-4 orders of magnitude for relevant noise regimes.
- Start with better approximations: $|0\rangle$ is very close to $|Y_k\rangle$ for $k \gg 1$.
- Add cost of Clifford gates.
 - Not simply multiplicative: required accuracy changes along the distillation flow.
- Rate 1 code for controlled SWAP.
- Use proper optimization instead of rule of thumb.

- Distillation of complex magic states to circumvent Solovay-Kitaev-like compiling.
 - Found savings of a 2-4 orders of magnitude for relevant noise regimes.
- Start with better approximations: $|0\rangle$ is very close to $|Y_k\rangle$ for $k \gg 1$.
- Add cost of Clifford gates.
 - Not simply multiplicative: required accuracy changes along the distillation flow.
- Rate 1 code for controlled SWAP.
- Use proper optimization instead of rule of thumb.

- Distillation of complex magic states to circumvent Solovay-Kitaev-like compiling.
 - Found savings of a 2-4 orders of magnitude for relevant noise regimes.
- Start with better approximations: $|0\rangle$ is very close to $|Y_k\rangle$ for $k \gg 1$.
- Add cost of Clifford gates.
 - Not simply multiplicative: required accuracy changes along the distillation flow.
- Rate 1 code for controlled SWAP.
- Use proper optimization instead of rule of thumb.

- Distillation of complex magic states to circumvent Solovay-Kitaev-like compiling.
 - Found savings of a 2-4 orders of magnitude for relevant noise regimes.
- Start with better approximations: $|0\rangle$ is very close to $|Y_k\rangle$ for $k \gg 1$.
- Add cost of Clifford gates.
 - Not simply multiplicative: required accuracy changes along the distillation flow.
- Rate 1 code for controlled SWAP.
- Use proper optimization instead of rule of thumb.

- Distillation of complex magic states to circumvent Solovay-Kitaev-like compiling.
 - Found savings of a 2-4 orders of magnitude for relevant noise regimes.
- Start with better approximations: $|0\rangle$ is very close to $|Y_k\rangle$ for $k \gg 1$.
- Add cost of Clifford gates.
 - Not simply multiplicative: required accuracy changes along the distillation flow.
- Rate 1 code for controlled SWAP.
- Use proper optimization instead of rule of thumb.

- Distillation of complex magic states to circumvent Solovay-Kitaev-like compiling.
 - Found savings of a 2-4 orders of magnitude for relevant noise regimes.
- Start with better approximations: $|0\rangle$ is very close to $|Y_k\rangle$ for $k \gg 1$.
- Add cost of Clifford gates.
 - Not simply multiplicative: required accuracy changes along the distillation flow.
- Rate 1 code for controlled SWAP.
- Use proper optimization instead of rule of thumb.

- Distillation of complex magic states to circumvent Solovay-Kitaev-like compiling.
 - Found savings of a 2-4 orders of magnitude for relevant noise regimes.
- Start with better approximations: $|0\rangle$ is very close to $|Y_k\rangle$ for $k \gg 1$.
- Add cost of Clifford gates.
 - Not simply multiplicative: required accuracy changes along the distillation flow.
- Rate 1 code for controlled SWAP.
- Use proper optimization instead of rule of thumb.