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Motivation

How to rotate a qubit by 0.23π?

Along the z axis: just wait for t = 0.23π~/J seconds.
Along the x axis: just Rabi pulse the qubit for t = 0.23π~/A
seconds.
General by Euler angle decomposition.

How about errors?
Algorithm uses 106 qubits and has dept 108.
There are 1014 occasions to pick up errors

|ψt〉 = |φ0
t 〉+ |Et〉 = (Ut + εVt)(|φ0

t−1〉+ |Et−1〉)

⇒ |Et〉 = εVt|φ0
t−1〉+ (Ut + εVt)|Et−1〉

⇒ |Et| ≤ ε+ |Et−1|

The final error is proportional to the number of gates (identity).
Each gate requires accuracy� 10−14.
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Fault-tolerant techniques

Transversal gates

| i

|0i

R(✓ ± c✏2)

R(✓ ± ✏)

R(✓ ± ✏)

R(✓ ± ✏)

R(✓ ± ✏)

R(✓ ± ✏)

R(✓ ± ✏)

|0i

|0i

|0i

|0i

U U †

0

0

0

0

0

= | i

This only works for very special angles θ.
Error can be further suppressed by iterating (concatenation).
We can realize the Clifford group this way: CNOT, H, P = Z1/2.
U itself is Clifford, so iterations don’t introduce more errors.
Not a universal gate set.
Slightly more general setting admits T= Z1/4, universal.
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Fault-tolerant techniques

State injection

�y
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2
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θ

2
|0〉|ψ〉+ sin
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2
|1〉σy|ψ〉

= cos
θ

2
|i〉+ | − i〉√

2
|ψ〉 − i sin

θ

2
|i〉 − | − i〉√

2
σy|ψ〉

Measure |i〉 : (cos θ2 − i sin θ
2σy)|ψ〉 = Ry(−θ)|ψ〉

Measure | − i〉 : (cos θ2 + i sin θ
2σy)|ψ〉 = Ry(θ)|ψ〉

Can realize a rotation around y of angle ±θ given state |Yθ〉 and Clifford
operations.

An error θ ± ε in the state |Yθ〉 translate into an error ε in the gate.
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Fault-tolerant techniques

Magic state distillation

How to get accurate states |Yθ〉?

U is Clifford.
This only works for very special angles θ.
With Clifford operations, all we need is θ = π/8 to get T = Z1/4,
universal.
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Fault-tolerant techniques

Cost for physical noise rate 1%
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10−29 2181
10−38 3632
10−45 6543

Meier, Eastin, & Knill

This is the number of noisy |Yπ/8〉
states needed to distill one
high-accuracy |Yπ/8〉.
It is assumed that Clifford operations
are noiseless.
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Compiling complex gates

Compilation

How to rotate a qubit by 0.23π?
Get a universal set of gates CNOT, H, P = Z1/2, T = Z1/4.

Because they are "transversal" in the code.
By distilling |Yπ/8〉.

Compile: R(0.23π) ≈HTHPTPTHTHPTPTPTHPTHPHTPHTPTH
Precision δ requires O(logc 1

δ ) gates (Solovay-Kitaev).
Hidden constant in O are huge.
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Compiling complex gates

Cost for physical noise rate 1%
Precision # inputs
10−3 5
10−5 17
10−6 28
10−8 87
10−10 139
10−12 261
10−15 436
10−18 697
10−23 1309
10−29 2181
10−38 3632
10−45 6543

Meier, Eastin, & Knill

Precision # T gates
10−3 28
10−5 132
10−7 670
10−10 3,284
10−15 14,312
10−22 74,162
10−33 347,388
10−51 1,692,692

Kliuchnikov, Maslov, &
Mosca

Need precision
10−14

Compiled logical
gates will use 104

T gates
Each of these T
gates must have
accuracy
10−14

104 = 10−18

Overhead = 14, 312× 697 = 9, 975, 464
Clifford operation cost not accounted.
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High-level state distillation
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High-level state distillation

High level state distillation

Our approach

High level magic-state distillation |Yk〉 = |Yθ〉 with θ = 2π/2k.
Corresponding rotations Rk = R(2π/2k).

T = R3.

Note that Rk−1Z|Yk〉 = |Yk〉.
Need Rk−1 to distil gates |Yk〉 (Gottesman-Chuang).
Compiling becomes trivial (next slide).

Landahl & Cesare used Reed-Muller codes to distill |Yk〉
We use the 4-qubit code in a similar way as Meier, Eastin, & Knill.
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High-level state distillation

How to rotate a qubit by 0.23π?

0.23⇡ = 2⇡ ⇥ 0.00011101011100001010001111010111

Rotate to precision 2k with k + 1 of these rotations.
Get any single-qubit rotation by Euler angles decomposition.
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High-level state distillation

Twirl

For a qubit basis {|ψ〉, |ψ〉}, twirl T|ψ〉 = |ψ〉 and T|ψ〉 = −|ψ〉
Twirl makes matrices diagonal in {|ψ〉, |ψ〉} basis

1
2
(ρ+ TρT†) = 〈ψ|ρ|ψ〉 · |ψ〉〈ψ|+ 〈ψ|ρ|ψ〉 · |ψ〉〈ψ|

Twirl for {|0〉, |1〉} is T0 = Z.
Twirl for {|Yk〉, |Yk〉} is Tk = Rk−1Z

We can perform Tk with a |Yk−1〉 state.
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High-level state distillation

Swap test

|Yki + ✏|Y ki

|Yki + ✏|Y ki

|0i + |1i

Tk

x

(|0〉+ |1〉)|Yk〉|Yk〉 SWAP−−−→ |0〉|Yk〉|Yk〉+ |1〉|Yk〉|Yk〉
Tk−−−→ |0〉|Yk〉|Yk〉+ |1〉|Yk〉|Yk〉

SWAP−−−→ |0〉|Yk〉|Yk〉+ |1〉|Yk〉|Yk〉
= (|0〉+ |1〉)|Yk〉|Yk〉

(|0〉+ |1〉)|Yk〉|Yk〉 SWAP−−−→ |0〉|Yk〉|Yk〉+ |1〉|Yk〉|Yk〉
Tk−−−→ |0〉|Yk〉|Yk〉 − |1〉|Yk〉|Yk〉

SWAP−−−→ |0〉|Yk〉|Yk〉 − |1〉|Yk〉|Yk〉
= (|0〉 − |1〉)|Yk〉|Yk〉
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High-level state distillation

Swap test

Get outcome + with probability 1− 2ε.
Given this outcome, state is |Yk〉|Yk〉+ ε2|Yk〉|Yk〉.
Get outcome − with probability 2ε, reject the state.

Distillation
Can quadratically increase the fidelity of |Yk〉 using Tk and controlled
SWAP gate.

Works as well for incoherent noise |Yk〉〈Yk|+ ε|Yk〉〈Yk|.
This can be obtained from any state by twirling.

How to perform Tk?
Answer: By injecting distilled |Yk−1〉 states.

How to perform controlled-SWAP without introducing more errors?

Not a Clifford operation.
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High-level state distillation

4 qubit code

| i

|0i
|0i

{
U U †

U | i|00i = | i
Z1 ≡ UZ1U† = ZIIZ
X1 ≡ UX1U† = XXII
Z2 ≡ UZ2U† = XIIX
X2 ≡ UX2U† = ZZII
S1 ≡ UZ3U† = ZZZZ
S2 ≡ UZ4U† = XXXX

U is Clifford.
Z|0〉 = |0〉 ⇔ S|ψ〉 = |ψ〉.
This code detects all single-qubit errors.

Error rate ε→ ε2.
Apply H to all qubits maps S to itself.

H⊗4Z1H⊗4 = XIIX = Z2
H⊗4X1H⊗4 = ZZII = X2
H⊗4Z2H⊗4 = ZIIZ = Z1
H⊗4X2H⊗4 = XXII = X2

Transversal Hadamard realizes SWAP.
Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 19 / 29
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High-level state distillation

Encoded SWAP test

|0i + |1i

Tk

x
|Yki
|Yki

|0i
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U U †H

H

H

H

|0i
|0i

U U †
H

H

H

H

Tk

|0i + |1i
|Yki
|Yki

x

=

How to realize controlled-H gates? (Not Clifford)
Note that H = R(π/8) Z R(−π/8)
So up to π/8 rotations, c-H = c-Z, the latter is Clifford.
π/8 rotations are obtained by injecting |Y3〉.

But |Y3〉 gates are noisy!
This is OK, they are used inside an error correcting code.
We can use previously distilled |Y3〉 states when distilling |Yk〉.
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High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



High-level state distillation

Summary

To distill a |Yk〉 state, we need...
Some noisy versions of |Yk〉.
Some “not so noisy" versions of |Yk−1〉 to implement the twirl Tk.

As used in the SWAP test.
To make the |Yk〉 noise more diagonal if desired (not needed).

Some “not so noisy" versions of |Y3〉 to implement the c-H.
Given the accuracy 1− εj of the inputs |Yj〉, we can...

Compute the accuracy of the distilled |Yk〉.
Compute the rejection probability (wasting these inputs)

Reject when the 4-qubit code detects an error.
Reject when the SWAP test fails.

Knowing the rejection probability enables us to compute the
average number of each component used.
In our calculations, the accuracy of |Yj〉 has two components
(diagonal and off-diagonal).

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 21 / 29



Results

Outline

1 Motivation

2 Fault-tolerant techniques

3 Compiling complex gates

4 High-level state distillation

5 Results

6 Outlook & Conclusion

Duclos-Cianci & Poulin (Sherbrooke) Quantum Compiling & Distillation GT’13 22 / 29



Results

Rule of thumb

Distillation with perfect gates takes εk to ε′k = cε2
k .

The use of noisy |Yj〉 to distill |Yk〉 will deteriorate this ε′k.
How accurate should the |Yj〉 be?

Having εj = 10−30 while attempting to distill ε′k = 10−10 seems like
an overkill, we’ve wasted our time obtaining very high-quality |Yj〉.
If they are too noisy, distillation will be useless.

If Nj states |Yj〉 are used in the distillation, use εj ≈ ε′k/Nj.
This will roughly double ε′k.

This could be thoroughly optimized.
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Results

Initial accuracy

Standard assumption: |Y3〉 is initially prepared with accuracy 1%,
and distilled to any desired accuracy.
How well should we assume |Yj〉 can be prepared?
Does it make sense to prepare |Y10〉 ≈ |0〉+ 2−10|1〉 to accuracy
1%?
May as well prepare |0〉.

Assumption on initial accuracy

We use the scheme of Meier, Eastin, & Knill to prepare |Y3〉
assuming an initial error of 1%.
For all other |Yk〉, k > 3, we initially prepare |0〉 ≈ |Yk〉, which we
can do to great accuracy (Clifford).
As always, additional cost for Clifford operations is not accounted.
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Results

Results: cost of realizing Rk
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Outlook & Conclusion

High rate generalization

|0i + |1i

Tk

x
|Yki
|Yki

|0i
|0i

U U †H

H

H

H

|0i
|0i

U U †
H

H

H

H

Tk

|0i + |1i
|Yki
|Yki

x

=

Requires 4 c-H gates to distill 2 states |Yk〉 (per round).
Gates c-H are realized by injecting states |Y3〉: rate 1/2.
Higher rate encoding?
Use [[n = 2m + 2, k = 2m, d = 2]] with the property that H⊗n

SWAPs qubit j with m + j.

S0 =
∏

i

Xi, S1 =
∏

i

Zi

Zj =

2j+1∏
i=0

Zi, Xj = X2j+1X2j+2 for j = 0, 1, . . .m− 1

Zj =

2j+1∏
i=0

Xi, Xj = Z2j+1Z2j+2 for j = m,m + 1, . . . 2m− 1
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Rate = m
m+1 → 1.

Error suppression ε→ cε2

c ∝ m2 since there are more locations for failures.
Rejection probability p ∝ mε

Increase m along the distillation flow.

Gain is more that just factor of 2 because of the recursive nature
of the distillation.
Enables to smoothly vary target accuracy.
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Conclusion & Outlook

Distillation of complex magic states to circumvent
Solovay-Kitaev-like compiling.

Found savings of a 2-4 orders of magnitude for relevant noise
regimes.

Start with better approximations: |0〉 is very close to |Yk〉 for k� 1.
Add cost of Clifford gates.

Not simply multiplicative: required accuracy changes along the
distillation flow.

Rate 1 code for controlled SWAP.
Use proper optimization instead of rule of thumb.
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