Interferometric and Spectroscopic Diagnostics for Plasma Transport Studies in the High Current Pulsed Cathodic Arc

George B. Warr1,2, John Howard2, Andrew Viquerat1, Rita Chan1, Richard N. Tarrant1, Marcela M.M. Bilek1, Boyd D. Blackwell2, Jeffrey H. Harris2

1School of Physics, University of Sydney, Sydney, NSW 2006, Australia

2Plasma Research Laboratory, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia
Abstract

• Early results are presented from interferometric and spectroscopic diagnostics being installed on the University of Sydney pulsed high-current cathodic arc [1].

• These diagnostics are being used to study and optimise plasma transport through the arc’s quarter-torus magnetic macroparticle filter.

• In high-current pulses (~3 kA) measured electron densities are >2×10^{20} m^{-3} in the middle of the filter and are ~2×10^{18} m^{-3} in the substrate region at the filter exit.

• A two-fluid model of the transport [2] has been implemented in Matlab. Initial results show qualitative agreement with measurements.

• Early spectroscopic measurements are reported. These identify potential lines for use with a high-resolution MOSS [3] interference spectrometer being developed for ion Doppler measurements on the arc.
Pulsed Arc Layout

- Duct Coil
- 2mm Interferometer Beam Path
- Anode
- 8mm Interferometer Beam Path
- Cathode
- Rogowski Coil
- Substrate
8mm Interferometer measures electron density at Substrate.

- Probe Source (38GHz Gunn)
- Directional Coupler (3dB)
- Isolators
- Reference Source (38GHz Gunn) [Behind translator]
- Reference Detector
- Probe Detector
- Plasma in Substrate Region

4 horns inside port and flexible waveguide enable radial profile measurements.
Schematic Layout of 8mm Interferometer
2mm Interferometer measures electron density in toroidal duct

- Breadboard table mounted on horizontal translators - enables radial profile measurements of the plasma in the toroidal duct.
- Plasma ducted from cathode source to substrate by toroidal duct inside vacuum vessel.
- 2mm wavelength radiation detector.
- Quasi-optical beam path.
- 2mm IMPATT swept frequency (140-141 GHz) source.
 - Sweep bandwidth selected to match one wavelength path difference between probe and reference arms of interferometer, producing sinusoidal wavefunction at detector.
 - Sweep rate: 100kHz.
New 2mm Interferometer - First Results

Cathode Current (Scale 0→3000 A)
Anode Current
Net Available Current (Cathode-Anode)
Duct Magnetic Field (Scale 8→18 mT)
Duct Bias (Scale -20→0 V)
Substrate Bias (Scale -200→0 V)
[Note: substrate floating this pulse]
Substrate Current (Scale 0→0.5 A)
Plasma Current $\phi=9^\circ$ (Scale 0→800 A)
[Before Duct]
Plasma Current $\phi=30^\circ$ (Scale 0→800 A)
[1/3 into Duct]
Plasma Current $\phi=60^\circ$ (Scale 0→500 A)
[2/3 through Duct]
Plasma Current $\phi=75^\circ$ (Scale 0→300 A)
[After Duct]
Electron density (Scale 0→5x10^{18} m^{-3})
[Centre of Duct - from 2mm interferometer]
Electron density (Scale 0→1.2x10^{17} m^{-3})
[At Substrate - from 8mm interferometer]
New High-Speed Data Acquisition System Installed

D-TACQ ACQ216CPCI
16 channel 10MS/s Simultaneous Digitiser
• Connected via gigabit ethernet to MDSPlus data server running on linux.
• Currently recording 16 channels of data for a pulse every two seconds.
• Potentially able to record faster than the maximum 10 pulse/second rate of the pulsed arc.
MDSPlus Database Sample Data Set
Early Results:
Effect of Varying Duct Bias on Electron Density in Centre of Duct

![Graph showing electron density over time for different duct biases. The x-axis represents time in microseconds (µs) ranging from 0 to 800, and the y-axis represents electron density in m⁻³ ranging from 0 to 4.0e19. The graph includes traces for 0V, 20V, 40V, and 60V biases.](image)
Early Results:
Effect of varying Cathode Current on Electron Density in Substrate Region
Early Results:
Effect of varying Duct Magnetic Field on Electron Density in Substrate Region
Discussion of Early Interferometer Results

• Increased arc current produces increased electron density.

• Increased duct magnetic field improves plasma transport to the substrate.

• Positive biasing of the duct aids plasma transport. There is a bias voltage of maximum transport efficiency.

• With high currents and moderate duct magnetic fields, the duct plasma reflected the 2mm interferometer beam, implying electron densities can exceed $2.4 \times 10^{20} \text{m}^{-3}$ in the duct.
Development of a Two-Fluid Model of Plasma Transport through the Toroidal Duct

\[(\mathbf{v}_i \cdot \nabla) \mathbf{v}_i + \frac{kT_i}{m_i} \nabla \ln(n) - \frac{Ze \mathbf{E}}{m_i} + v_{ie} \frac{m_e}{m_i} (\mathbf{v}_i - \mathbf{v}_e) = 0 \]

\[(\mathbf{v}_e \cdot \nabla) \mathbf{v}_e + \frac{kT_e}{m_e} \nabla \ln(n) - \frac{Ze \mathbf{E}}{m_e} + v_{ei} \frac{m_e}{m_i} (\mathbf{v}_e - \mathbf{v}_i) + \omega_{ce} (\mathbf{v}_e \times \mathbf{h}) = 0 \]

- These equations are rearranged and, after applying continuity and quasi-neutrality conditions, give two linked 3-D PDE's.
- These PDE's are numerically solved simultaneously to compute ion number density and electric potential throughout the duct.
Toroidal Coordinates used to simplify boundary conditions in duct

\[
x = \frac{a \cos(\varphi) \sinh(\tau)}{\cosh(\tau) - \cos(\sigma)}
\]

\[
y = \frac{a \sin(\varphi) \sinh(\tau)}{\cosh(\tau) - \cos(\sigma)}
\]

\[
z = \frac{a \sin(\sigma)}{\cosh(\tau) - \cos(\sigma)}
\]

\[\sigma, \tau = \ln(r/r')\]

(B Alterkop, 1996)
Key model parameters affecting plasma transport

- Generalised collision frequency ν.
- Average ionization state Z. For titanium Z is typically 2.5.
- Tangential velocity around the duct v_0. Note v_0 is hypersonic, $v_0 \sim 1.4 \times 10^4 \text{ ms}^{-1}$.
- Magnetic field strength B, for example:

Ion density at 30º toroidal angle
(1/3 through duct)
Ti Arc Spectra 200-860 nm
(Lots of spectral lines!)

View perpendicular to plasma jet (φ=22.5°)
Ti Spectra Detail with Candidate Line for MOSS Spectrometry

Ti II (Ti⁺) 450.1273 nm line a candidate for use with MOSS interference spectrometer
References

